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Memoria de Tesis
presentada en la Universidad de Granada
para optar al grado de Doctor en F́ısica

Directores de tesis:

Dr. Fernando Moreno Danvila
Dra. Olga Muñoz Gómez
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compañeros que han sido tan decisivos en que yo escriba esta tesis, como el
tribunal pertienente que decidiera la concesión de mi beca. Son mis maestros
y profesores desde el colegio. Creo que he tenido una suerte incréıblemente
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hacer que parezca fácil. Eres la médica que más sabe de polarización circular
del mundo, y yo me hago el chulo hablando de Medicina cuando alguien



comenta su dolencia. “Gracias” no es un premio suficiente a tu labor. Soy
mal pagador.

El postre se toma al final, porque aśı queda el regusto a chocolate, aśı
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Resumen
El presente trabajo está orientado a la búsqueda de los mecanismos f́ısicos que
puedan explicar el grado de polarización circular observado en los cometas.
Con objeto de establecer una lista de los posibles mecanismos, primero deriva-
mos una condición necesaria para que aparezca un cierto grado de polariza-
ción circular no nulo, la cual es que la simetŕıa del sistema respecto a la
dirección de la luz incidente debe romperse de alguna manera. El siguiente
paso fue identificar los mecanismos que cumplen ese requisito. En primer lu-
gar, investigamos el alineamiento de los granos en el coma, que, de hecho, ha
sido propuesto por varios autores como una posible causa de la polarización
circular. Para ello desarrollamos un modelo numérico de alineamiento de los
granos por el viento solar de tipo Monte Carlo. Nuestros resultados mues-
tran que las part́ıculas elongadas se alinean en unas horas, pero el grado de
polarización circular que se produce es nulo, lo cual es debido a la configu-
ración simétrica respecto a la dirección de la luz incidente que se genera por
ese alineamiento. Como segundo mecanismo, se ha investigado la dispersión
simple de la luz por part́ıculas asimétricas ópticamente inactivas. En este
caso, y para dos part́ıculas modelo muy concretas, encontramos un nivel del
grado de polarización circular resultante del orden de el observado, e incluso
mayor. Sin embargo, como quiera que las part́ıculas en un coma real deben
estar distribuidas en una gran cantidad de tamaños y formas, realizamos una
extensión de los cálculos teniendo en cuenta esta circunstancia. Los resulta-
dos fueron negativos, en el sentido de que a medida que en la distribución
se iban añadiendo cada vez más formas y tamaños, el grado de polarización
circular se acercaba cada vez más a cero. En tercer lugar descartamos la posi-
bilidad de que la actividad óptica de los materiales que componen el polvo
del coma sea la responsable de la polarización circular en los cometas. La
razón es que los resultados producidos no encajaŕıan con algunas de las car-
acteŕısticas encontradas en las observaciones. El cuarto y último mecanismo
que propusimos fue el de la dispersión multiple en condiciones de asimetŕıa
respecto de la dirección de la luz incidente. Para el estudio de este mecan-
ismo fue necesario desarrollar un programa de tipo Monte Carlo que simulara
el transporte radiativo en estas atmósferas. A partir de este programa pudi-
mos calcular el flujo y los grados de polarización lineal y circular de la luz
emergente de un coma cometario, tanto ópticamente delgado como grueso, es
decir, en condiciones de dispersión simple o múltiple. Después de estudiar los
resultados del código para diferentes parámetros de entrada que caracterizan
a la atmósfera cometaria y a la región que se observa, llegamos a la con-
clusión de que este mecanismo es el único que puede producir por śı mismo
los niveles observados del grado de polarización circular en los cometas.



Abstract

In this work, a systematic study aimed at identifying all possible mecha-
nisms producing the observed non-zero degree of circular polarization in the
light scattered by comets is presented. In order to make a list of possible
mechanisms, we first derived a necessary condition, which is that the symme-
try of the system around the direction of the incident light must be broken
somehow. Then, we made a search for the mechanisms fulfilling this con-
dition. The first mechanism tested was the grain alignment, that has been
proposed by several authors as the cause for the presence of a certain de-
gree of circular polarization in comets. To this end, we developed a Monte
Carlo model of grain alignment by solar wind particles. We found that elon-
gated particles do align in a few hours by this mechanism, but they do not
produce any degree of circular polarization owing to the azimuthally sym-
metrical configuration with respect to the direction of the incident light that
results from the alignment. The second mechanism tested was the single
scattering of light by optically inactive asymmetrical particles. In this case
(just for two specific model shapes), we found a significant degree of circular
polarization in the scattered light, comparable to, or even higher than, the
observed. However, in a real cometary atmosphere there must exist a large
variety of asymmetrical particles with different sizes and shapes, so that an
extension of these calculations to samples of distributions of asymmetrical
particles of many different sizes and shapes was also conducted. The result
was negative, in the sense that for the whole sample the degree of circular po-
larization tends asymptotically to zero as more and more particles are added
to the system. Third, we ruled out the possibility of the optical activity of
the materials forming the dust particles of the coma to be responsible for
the degree of circular polarization observed in comets. The reason is that
the produced results would not match some of the features we found in the
observations. The fourth, and last, mechanism we tried was the presence
of multiple scattering in an azimuthally asymmetrical scenario around the
direction of the incoming light. To accomplish this, a Monte Carlo model of
radiative transfer in cometary comae was developed. The model is capable
of giving the flux, and the degree of linear and circular polarization of light
emerging from dusty cometary environments, under conditions of either sin-
gle or multiple scattering. After trying several scenarios corresponding to
different physical parameters of the cometary atmosphere, and different ob-
servational conditions, we concluded that the multiple scattering processes
are the only mechanism that might give rise to the observed degree of circular
polarization by itself.
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Chapter 1

Introduction

Comets were formed at the beginning of the Solar System formation, and
since their genesis they have remained quite isolated in very clear regions far
away from the Sun and from any other massive body of the Solar System
(see Sec. 2.2). Hence, since their beginning, they have been prevented more
than any other type of bodies of the Solar System from heating, from the
interaction with massive planets, and from collisions with other small bodies.
Thus, comets are regarded as the most pristine objects in the Solar System,
representing the most primitive form of the material out of which all Solar
System bodies have formed, and giving information on their formation and
evolution.

Once they were formed, comets that did not escape from the Solar System
or crash into any other object, remained moving around the Sun in very far
orbits (Sec. 2.2). Eventually, because of some dynamical perturbation, they
are taken out from their orbits and sometimes fall into the inner Solar System,
becoming observable from Earth.

The surface features of a comet nucleus cannot be observed from Earth
because it is just a few kilometers wide (the largest nucleus ever observed was
Hale-Bopp’s 40 km across). However, close to the Sun, comets exhibit dust
comae and tails driven by ice sublimation owing to high temperature. The
coma usually reach dimensions of the order of 104 kilometers and become
observable because of light scattered by the dust particles (see Chap. 4).

The study of the composition of the dust contained in comets may give
us some information about the primordial composition of the Solar System.
Getting some knowledge about the shape and internal structure of those
grains may provide us with some clues about the physical processes that those
particles underwent during their formation in the primordial Solar System
4.6 billion years ago.

A way to carry out such a study is to send a spacecraft to the comet and

17



18 CHAPTER 1. INTRODUCTION

perform in situ measurements or take some samples. Making measurements
and sending the data back to Earth is the goal of the ESA space mission
Rosetta, which was launched on March 2nd, 2004, and is expected to start
orbiting around Comet 67P/Churyumov-Gerasimenko in 2014. The orbiter
will rotate around the coma, but also a lander module will be deployed and
will make measurements on the surface of the nucleus.

Figure 1.1: Rosseta mission module. Credit: ESA.

Another recent space mission to study comets was Stardust, by NASA.
It consisted of a probe that travelled to the nearby of Comet P/Wild 2 to
capture some dust grains in an aerogel and send them back to Earth in a
module that landed in the dessert of Utah on January 15th, 2006. Particles
captured in the aerogel were localized in microscopic pictures with the help
of volunteers, and they were extensively analyzed by NASA scientists (see,
e.g., [26]).

Deep Impact was a previous mission performed by NASA. It consisted on
crashing a projectile of 370 kg on the surface of Comet Temple 1 on the 4th
of July, 2005. Scientists observed then from Earth the cloud of gas and dust
ejected from the nucleus

The only remote way of studying a comet is by the light it scatters. To
retrieve information on the physical properties of the scattering particles,
we must relate the properties of the observed scattered light to the physical
properties of the scatterers.

In the present work, we focus on one of the properties of the scattered
light: circular polarization. Our goal is then to identify the mechanisms
giving the observed degree of circular polarization in comets, i.e., to establish
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Figure 1.2: Stardust module containing the collected dust particles, just after
landing in the dessert of Utah, on January 15th, 2006. Credit: NASA.

Figure 1.3: Impact of the Deep Impact projectile on the nucleus of Comet
Temple 1. Credit: NASA.

which properties of the particles in the coma, or the surface of the nucleus,
may explain the observations.

The theoretical basis on comets and light scattering are presented in
Chaps. 2 and 3 respectively. In Chap. 4 we make a summary of some of the
available observations of the degree of circular polarization in comets, and
point out the common properties of all of them and their remarkable features.
Once the observations are described and analyzed, we make a theoretical ap-
proach to the problem by deriving a necessary condition for a mechanism to
circularly polarize light, and elaborate a list of candidate mechanisms based
on that condition (Chap. 5). Then, the following mechanisms are studied:
alignment of non-spherical particles, in Chap. 6, presence of randomly ori-
ented asymmetrical grains, in Chaps. 7 and 8, scattering by optically active
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materials (Chap. 9), and finally, in Chap. 10, multiple scattering by a local
non-central region of a coma. A summary of the general conclusions of the
present work are presented in Chap. 11, and Chap. 12 contains a list of some
work items to be accomplished in the near future.



Chapter 2

Basics on comets

2.1 Definition of comet

Along with asteroids, centaurs, and transneptunian objects, comets belong
to the so-called small Solar System bodies category. They can be described
as kilometer-sized irregularly-shaped chunks of dusty ice that develop a shell
of sublimated gas with dust, a tail of gas, and another tail of dust when they
approach the Sun.

A rigorous definition of comets is given by Festou et al. (1993) [19]. Their
definition of the different parts of a comet is as follows:

• Nucleus: a kilometer-sized, irregularly shaped, solid body of relatively
loose internal cohesion, consisting of ices (frozen gases; mostly H20)
with imbedded dust particles. The nuclei move in elliptical, sometimes
nearly parabolic orbits in the solar system. The orbits are basically
unstable, due to the variable action of the gravitational attraction of
the planets and are also influenced by ”non-gravitational” forces caused
by anisotropic out-gassing from the nuclei.

• Coma: a gaseous and dusty atmosphere around the nucleus which de-
velops when it is heated as it approaches the Sun and again abates
during the outward motion in the orbit. The coma consists of evapo-
rated molecules and their daughter products (radicals, atoms, ions) as
well as dust particles released in the same process. Depending on the
distribution of ”active” areas on the surface of the nucleus, comae may
be featureless or highly structured (jets, shells). They shine by atomic
and molecular emissions, mostly excited by fluorescence, by sunlight
reflected by the dust and by thermal emission at infrared wavelengths.

21
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• Ion tail: consisting of ions which are lost from the coma and accelerated
in the anti-solar direction by action of the interplanetary magnetic field
carried by the solar wind. Ion tails shine by the fluorescence from their
ions.

• Dust tail: consisting of dust particles lost from the coma and spread
along the orbit while subjected to pressure of the solar radiation. Dust
tails shine by reflected sunlight and thermal infrared emission and they
are an important source of interplanetary material.

Figure 2.1: Comet Hale-Bopp in 1997. The coma is the brightest region
near the center. Both tails emerge from the coma: the ionic tail (blue),
in the anti-solar direction, is due to the interaction of the solar wind with
the gas of the coma, and the dust tail (yellow) is slightly curved owing to
radiation pressure. Credit: E. Kolmhofer, H. Raab; Johannes-Kepler-
Observatory, Linz, Austria.

The nuclei of comets do absorb almost all light that they receive. Let us
define the surface albedo of the nucleus as the ratio between the reflected and
the received radiation energy. Some measurements have been performed of
such a ratio, and it is of the order of 4% (see, e.g. [32, 33]).
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2.2 The origin of comets

Comets are usually divided into two types by the period of their orbit [15]:

1. Short-period comets:

• Less than 200 years period.

• Orbits of 30 - 100 AU in semi-major axis.

• Low inclination of the orbits with respect to the ecliptic plane.

2. Long-period comets

• More than 200 years period.

• Orbits of 10,000 AU or larger in semi-major axis.

• Isotropic distribution of the inclination of orbits.

The generally accepted interpretation of this classification is that there are
two different origins for comets [15]: Planetesismals forming in the region of
the Jovian planets were ice-rich, because that zone is beyond the frost line of
the Solar System. Some of these planetesismals underwent close gravitational
encounters with the Jovian planets, and that made a number of them to be
cast away in all directions. Some may have completely escaped from the Solar
System and now are drifting through the interstellar space. The rest ended
up in orbits with very large average distances from the Sun. These became
objects of the Oort cloud, a spherical shell that lies roughly 50,000 AU from
the Sun. A dynamical perturbation caused, for instance, by a near supernova
explosion, may take some of these objects out of their orbits and a number
of them could fall into the inner Solar System. This is supposed to be the
origin of the long-period comets. Planetesimals formed beyond Neptune were
even more ice-rich than those forming among the Jovian planets. They could
not aggregate into larger bodies because the low density of material in that
zone makes very unlikely an encounter of two objects. As they did not have
gravitational interactions with the massive Jovian planets, they remained in
the region where they were formed, building up the so called Kuiper belt.
Obviously, the Kuiper belt is quite plane, it coincides with the plane of the
ecliptic and it starts at the orbit of Neptune (≈ 30 AU). Some of the objects
lying in the Kuiper belt may fall into the inner Solar System after any kind
of dynamical perturbation of their orbits. This is thought to be the origin
of the short-period comets. According to this interpretation, short-period
comets were formed further away than long-period ones.
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Figure 2.2: Sketch of the outer part of the Solar System: the plane region
that starts at the orbit of Neptune is the Kuiper belt, where short-period
comets come from. Long-period comets come from the far spherical shell:
the Oort cloud. Credit: Stern 2003 [66].

2.3 Composition of the dust

Historically, silicates have been considered the main components of comets,
according to infrared spectra. The first detection of the silicate 10−µm band
was made by Maas et al. in 1970 [41].

In 1997, Kolokolova & Jockers [36] presented a work in which they fitted
the refractive index of the dust particles for the wavelength dependence of
the linear polarization to coincide with that typically observed in comets.
The fit was made based on observations of several comets. They deduced
that cometary dust grains are mainly composed of silicates, with less than
1% (in volume) of metallic and carbon inclusions.

A very complete study based on the fit of infrared spectra, and the mea-
sured degree of linear polarization of the scattered light at various phase
angles and wavelengths, was carried out by Min et al. in 2005 [48]. They
studied the composition of Comet Hale-Bopp, and deduced that dust grains
were mainly formed by amorphous carbon (39.1% in volume), amorphous
olivine (25.7%) and amorphous pyroxene (18.3%). Crystalline silicicates were
also inferred to be present in comets, but in a much lower abundance. In this



2.4. SIZE DISTRIBUTION OF THE PARTICLES 25

study, silicates are still the primary component, although carbon becomes a
main component too.

More recently, much more direct information on the composition of co-
metary dust of Comet Wild 2 has been retrieved from Stardust mission. The
analysis of the sample reveals that silicates are indeed the main components
[5, 26], but this time the abundance of carbon is found to be much smaller
that that inferred in [48] for Hale-Bopp.

A very exhaustive work by Kelley & Wooden was recently published [34].
They review ground-based and space-based mid-infrared spectra of short-
period comets, taken over the last 25 years. They inferred that the silicate
content of short-period comets might be low relative to other species like
amorphous carbon or FeS. They also claim that short period comets may
contain crystalline silicates, as comets from the Oort cloud (high-temperature
processes are needed for the formation of crystals).

In conclusion, silicates appear as the mean component of cometary dust
in most works, although amorphous carbon is also considered important in
some comets.

Hereafter, we will refer as m to the complex refractive index of any
medium. The imaginary part of m is a measure of the absorption by the
medium [7].

2.4 Size distribution of the particles

Suppose a sample made of spherical particles. The number density distribu-
tion n(r) at a certain point is defined such as n(r)dr is the fraction of particles
with radii within [r, r + dr] at that point. By definition, it is normalized to
unity:

∫ rmax

rmin

n(r)dr = 1. (2.1)

For non-spherical grains, the same definition is valid just by considering the
equivalent radius req instead of r (see Sec. 3.1 for definition).

A commonly used model size distribution is the power-law [25]:

n(r) =

{

c(δ, rmin, rmax)r
−δ if rmin ≤ r ≤ rmax,

0 otherwise.
(2.2)

The constant c(δ, rmin, rmax) can be obtained from the normalization condi-
tion (Eq. 2.1).

In real samples, the size of the grains usually varies through a very wide
range of several orders of magnitude. For this reason, it is more convenient
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to make plots using log r for the abscissa, instead of r. However, if we
plot n(r) as a function of log(r), we loose the simple interpretation of areas
under the curve as relative number of particles in a certain range of sizes.
A commonly adopted solution consists of using a new variable N(log r) such
that N(log r)dlogr = n(r)dr. The transformation between N(log r) and n(r)
is then given by N(log r) = ln 10rn(r).

In situ measurements of the dust size distribution functions are available
for a few comets only. Thus, measurements by Giotto mission on Halley’s
Comet dust provided us with a size distribution that could be fitted to a
power-law, with exponents varying between -2 and -3.4 approximately [44].
Stardust measurements gave a size distribution for Comet Wild 2 that could
also be fitted to a power-law, resulting in a slightly less steep size distribution
than that for Halley, with particles ranging from 0.01 µm to 1 mm [26].

On the other hand, remote sensing observations of dust tails, and their
interpretation in terms of models based on dynamical grounds, resulted also
in time-averaged size distributions that could be fitted to power-law functions
with exponents generally within the range -3 to -3.5 (see, e.g., [31] and [20]).



Chapter 3

Theoretical basis on light
scattering

3.1 Some basic definitions

Hereafter we will use the term light to refer to electromagnetic radiation of
any wavelength, not only visible radiation.

When a solid particle is illuminated by a beam of light, some of the
energy of the incident beam is absorbed (absorption) by the particle (and
re-radiated in form of thermal emission), and some of it is scattered in all
directions (scattering). If light is scattered at the same wavelength as the
incident light, we will call the scattering elastic scattering. In the limiting
case of scatterers much larger than the wavelength of the incident light, the
scattering phenomenon can be divided into three clearly distinguishable pro-
cesses: reflection on the surface of the scatterer particle, refraction through
the particle and diffraction by the borders. Out of this case, these phenomena
mix up in such a way that we can just talk about scattering.

In a typical scattering experiment, a cloud of particles is illuminated by a
beam of light and an observer sees light scattered in a certain direction (see
Fig. 3.1). The plane containing the directions of the incident beam and the
observed scattered light is called the scattering plane. The angle θ formed by
the directions of the observed scattered light and the incident beam is called
the scattering angle, and the phase angle φ is defined as φ = π − θ. We call
optical axis to the direction of the incident light.

In Fig. 3.2 we show the coordinates system to describe the components
of the electric field vector of a beam of light. We chose an orthogonal right-
handed system (see Eq. 3.1) for vectorial products to be calculated in the
usual way [45]. For simplicity, we also imposed that one of the axes lies on

27
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Figure 3.1: Sketch of a light scattering event. The scattering plane lies
through the directions of the incident and observed scattering beams.

the scattering plane, another one is perpendicular to the plane, and the last
one is obviously in the direction of propagation of light. The unit vectors
defining this system are:

• û in the direction (and sense) of the propagation of light,

• r̂ perpendicular to the scattering plane,

• l̂ through the scattering plane and perpendicular to û and to r̂ in such
a way that

r̂ × l̂ = û (3.1)

The axes choice is not unique, as seen in Fig. 3.2: vectors l̂′, r̂′, and û
also fulfill the constrain imposed in Eq. 3.1. Stokes parameters, flux, and the
degree of linear and circular polarization (defined in Secs. 3.2.2 and 3.2.3)
are independent of the choice of the system of reference. However, the signs
of the components of the electric field vector do depend on that choice.

Let us now define some concepts related to the scatterers:
Suppose a particle of arbitrary shape with volume V . Then, the equivalent

radius, req, is defined as the radius of a spherical particle with the same
volume.

req =
3

√

3

4π
V . (3.2)

Along the present thesis, we will usually refer to req as the size of a
particle.



3.1. SOME BASIC DEFINITIONS 29

Figure 3.2: Orthogonal right-handed reference systems to describe the elec-
tric field. Two options are presented: (̂l,̂r,û) and (l̂′,r̂′,û). Although the
signs of the components of the electric field vector depend on the choice we
make, the observable magnitudes remain the same. The system we assume
hereafter is the one plotted with solid lines (̂l,̂r,û).

The equivalent size parameter x of a particle is defined as:

x =
2πreq

λ
, (3.3)

where λ is the wavelength of the incident light (and the scattered light, in case
of elastic scattering). From the electromagnetic point of view, if we equally
scale the size of the scatterers and the wavelength of the incident light with-
out changing the shape of the particles, the resulting problem is completely
equivalent to the original one, if the refractive index m of the scatterers is
the same for the new wavelength. This is called the scale invariance rule,
and a rigorous proof of it can be found in [50].

Let us introduce now the concept of cross-section. Imagine a large particle
bombarded by a plain, uniform and constant stream of small solid projectiles.
Let us call F the total energy (kinetic energy of the projectiles) crossing a
surface perpendicular to the direction of propagation of the stream per unit
time and per unit area. If σ is the projected area of the particle on the plane
perpendicular to the incoming stream, then we have:

dE = Fσdt, (3.4)

where dE is the sum of the energy of all projectiles interacting with the
particle in a time interval dt. Now let us change the stream of small solid
projectiles by a beam of light of any wavelength, still plane, uniform and
constant, and let us assume that the particle does not absorb any radiation.
By analogy, we define the scattering cross-section σSCA of the particle as:

dE = FσSCAdt. (3.5)
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It has dimensions of area. It can be interpreted as follows: the total energy
scattered by the particle is equal to the energy of the incident radiation falling
on a surface σSCA perpendicular to the direction of propagation.

We define the geometrical cross-section G of a particle as its projected
area on a plane perpendicular to the direction of propagation of an incoming
beam of light.

The extensions of these definitions to an ensemble of N particles can be
done simply by adding:

σSCA =
N
∑

k=1

σk
SCA, (3.6)

σk
SCA being the scattering cross-section of the k-particle. Obviously, the same

addition relation is valid for the geometrical sections.
Contrary to the intuitive interpretation, the scattering cross-section is not

equal to the geometrical cross-section, either for a single particle or for an
ensemble of particles. Based on this fact, it makes sense the definition of the
ratio QSCA = σSCA

G
: the scattering factor. This magnitude is dimensionless.

Fig. 3.3 shows some examples of the ratio QSCA.
As stated before, not only scattering, but also absorption produces the

extinction of light when it interacts with matter. In a way similar to the
scattering cross-section, we define the absorption cross-section σABS as the
area such that the total energy absorbed by the particle is equal to the
energy of the incident radiation falling on a surface σABS perpendicular to
the direction of propagation.

The extinction cross-section is just the sum of the scattering and absorp-
tion cross-sections. If we directly illuminate a sensor, and then we interpose
a particle between the light source and the detector, the particle will cast a
shadow of area σEXT on the detector. As

σEXT = σSCA + σABS, (3.7)

then:
QEXT = QSCA + QABS, (3.8)

where the absorption factor QABS = σABS

G
and the extinction factor QEXT =

σEXT

G
.

Both the cross-sections and the factors present a problem: they tell us
about the particles of the cloud of scatterers, but do not contain any infor-
mation on how many particles per unit volume are present in that cloud.
For that purpose, we define the coefficients as the cross-sections per unit
volume:

KSCA = lim
∆V →0

σSCA

∆V
, (3.9)
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Figure 3.3: Scattering factor as a function of the size parameter of a single
sphere. The real part of the complex refractive index is Re(m) = 1.33.
Results are presented for four values of the imaginary part Im(m). Credit:
Hansen & Travis 1974 [25].

KABS = lim
∆V →0

σABS

∆V
, (3.10)

KEXT = KSCA + KABS = lim
∆V →0

σEXT

∆V
. (3.11)

The cross sections and the factors are properties of every single particle of
a sample or of the sample as a whole. The coefficients are properties of each
point of the space.

The single scattering albedo ω̃ of a particle is defined as:

ω̃ =
σSCA

σEXT
=

QSCA

QEXT
=

KSCA

KEXT
. (3.12)
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It varies from 0 to 1, and it gives information on how important is the
scattering in the extinction. In this way, ω̃ = 1 means that all extinction is
due to scattering and ω̃ = 0 means it is completely due to absorption.

3.2 Description of light

Radiation can be described at three levels. The most complete description
consists of giving the electric (or magnetic) field that constitutes the electro-
magnetic wave. For visible radiation this field cannot be directly observed,
because its oscillation period is much smaller than the typical duration of a
measurement. Nevertheless, the fields contain all the information about the
radiation.

Stokes parameters can be defined as functions of the components of the
electric field (Eqs. 3.34 to 3.37). They consist of four quantities that can
be determined experimentally. By this description, some of the information
contained in the fields is lost (like the oscillation period of the fields), but
all information on the flux and the degree of linear and circular polarization
(see Sec. 3.2.3 for definitions) is kept, and the formalism is far more simple
than that based on the fields.

The closest description to the directly observable quantities consists of
an array of three magnitudes: flux, degree of linear polarization and degree
of circular polarization. At this level of description, the information about
the dominant direction of vibration of the fields (in case it exists) is lost.

3.2.1 Description of light in terms of the electric field

vector

If we interpose a cloud of particles to a beam of light that propagates in vac-
uum, the electromagnetic waves propagating before and after the scattering
event will be solutions of the Maxwell equations for an homogeneous and
isotropic linear medium without any charge distribution, zero-conductivity,
and the electric permitivity and magnetic permeability of vacuum. In this
case, one solution is the monochromatic harmonic plane wave, that fulfills
the following properties [7]:

1. The wave propagates at speed c = 1√
ǫ0µ0

, where ǫ0 and µ0 are the electric

permitivity and the magnetic permeability of vacuum, respectively.

2. Both the electric field vector E and the magnetic field vector B are per-
pendicular to the direction of propagation of the wave û in all positions
at all times.
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3. Vectors E and B are perpendicular to each other in all points at all
times.

4. The amplitudes of the electric and magnetic fields, E0 and B0, are
related by B0 = 1

c
E0.

5. Vectors E and B are in phase in all points at all times.

Statements 2 to 5 can be summarized by the equation:

B̂ =
1

c
û × Ê. (3.13)

This means that, in the case of scattering by a cloud of particles in vac-
uum, the magnetic field is univocally determined by the electric field. Hence,
the incident beam is completely described by:

E = ae−i(kz−ωt+ǫ)Ê, (3.14)

with Ê a real unit vector in the direction (and sense) of E, and ǫ the initial
phase. We can also write the electric field as a function of its components in
the reference frame defined in Fig. 3.2:

E(r, t) = El̂l + Er r̂,

El = ale
−i(kz−ωt+ǫl),

Er = are
−i(kz−ωt+ǫr). (3.15)

3.2.2 Description of light in terms of the Stokes pa-
rameters

In 1852 George Gabriel Stokes introduced the parameters named after him.
The goal of these quantities was to offer a handy way of describing light.

The Stokes parameters for monochromatic light can be defined as func-
tions of the components of the electric field vector:

I = ElE
∗
l + ErE

∗
r , (3.16)

Q = ElE
∗
l − ErE

∗
r , (3.17)

U = ElE
∗
r + ErE

∗
l , (3.18)

V = i (ElE
∗
r − ErE

∗
l ) . (3.19)
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We call (I, Q, U, V )t the Stokes vector, where t means transpose.
Substituting the components of the electric field (Eq. 3.15) in Eqs. 3.16

to 3.19, we can alternatively write the Stokes parameters as:

I = a2
l + a2

r , (3.20)

Q = a2
l − a2

r , (3.21)

U = 2alar cos (ǫl − ǫr), (3.22)

V = 2alar sin (ǫl − ǫr). (3.23)

In Fig. 3.4, the polarization ellipse is shown. Axes l and r are defined in
the direction and sense of l̂ and r̂ respectively. Light travels into the paper,
and the ellipse represents the trajectory of the tip of the electric field vector
through time at a fixed position. Inclination is given by angle χ, which
is measured by bringing the positive part of axis l to the mayor semi-axis
of the ellipse anticlockwise. Hence, 0 ≤ χ < π. The angle β contains the
information on the eccentricity of the ellipse and the sense of the polarization.
It remains within the interval −π/4 ≤ β < π/4. The modulus of tanβ can
be obtained as the ratio between the minor and the major axes of the ellipse.
The sign of β is determined depending on the sense of rotation of the electric
field vector. Along the present study, we do not need to establish a criterion
to set the correspondence between the sense of rotation of E and the sign of
β.

The Stokes parameters can also be written as functions of the quantities
that define the polarization ellipse [28] (see Fig. 3.4) as follows:

I = a2, (3.24)

Q = a2 cos 2β cos 2χ, (3.25)

U = a2 cos 2β sin 2χ, (3.26)

V = a2 sin 2β, (3.27)

where a2 = a2
l + a2

r . Suppose that the polarization ellipse is oriented with
its axes in the directions of the reference axes l and r (see Fig. 3.5). Then,
a can be understood as the hypotenuse of the right triangle formed by the
semi-axes of the ellipse. When rotating the reference axes by an angle irot

anticlockwise to (l′, r′), the change of the electric field vector components is
like this:

El′ = El cos irot + Er sin irot (3.28)

Er′ = −El sin irot + Er cos irot. (3.29)
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Figure 3.4: Polarization ellipse of a beam of light that propagates into the
paper. The ellipse represents the trajectory of the tip of the electric field
vector through time at a fixed position. The reference plane is that formed
by the axis l and the direction of propagation of light. The inclination of the
semi-major axis of the ellipse with regard to the reference plane is χ, while
β determines the eccentricity.

Therefore, the amplitudes of the new electric field vector components are:

al′ = al cos irot + ar sin irot (3.30)

ar′ = −al sin irot + ar cos irot. (3.31)

Then, a′2 = a2. We have deduced that a do not depend on the orientation
of the reference plane of the polarization ellipse, and as a consequence, it is
always the hypotenuse of the right triangle formed by the semi-axes of the
ellipse (see Fig. 3.4). Hence, according to Eq. 3.24, I is independent of the
scattering plane too, and it is a measure of the size of the polarization ellipse.

Eqs. 3.24 to 3.27 give us a geometrical interpretation of the Stokes pa-
rameters: I is a measure of the size of the polarization ellipse. The sign of
V is telling us whether the electric field vector is rotating to the right or to
the left. The magnitude of V informs us about the elongation of the ellipse.
V = 0 corresponds to the maximum elongation, when the ellipse becomes
a line. While increasing the modulus of V the elongation disappears until
the ellipse becomes a circle for |V | = I. On the other hand, U vanishes for
χ = 0, π/2, and achieves its extreme values for χ = ±π/4, while the opposite
happens to Q. Extreme (either positive or negative) values of Q (or equiva-
lently values of U close to zero) are typical of polarization ellipses with their
major axis close to the direction of the scattering plane or to its normal.
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When values of Q are close to zero, the major axis of the ellipse is close to
any of the middle positions between l̂ and r̂. When U tends to zero, the axes
of the ellipse are close to coincide with the axes of the reference system l and
r.

An obvious property of the Stokes parameters from their definition (Eqs.
3.16 to 3.19) is:

I =
√

Q2 + U2 + V 2. (3.32)

In this work we are interested in non-monochromatic light, since the
spectra of stars are approximately a black body continuum. For a non-
monochromatic beam of light (composed of plane waves of several frequen-
cies), the electric field can be written as a plane wave with amplitude and
initial phase variable in time (see Eq. 3.33) [4]. In this case, the Stokes
parameters, as defined in Eqs. 3.16 to 3.19, are variable in time. To avoid
this, we now define the Stokes parameters for non-monochromatic light as
follows. If the components of the electric field vector are given by:

El (t) = al (t) e−i(kz−ωt+ǫl(t)),

Er (t) = ar (t) e−i(kz−ωt+ǫr(t)), (3.33)

Figure 3.5: Polarization ellipse (light travelling into the paper) oriented with
its axes in the directions of the reference axes l and r. In such an orientation,
the hypotenuse of a right triangle formed by the semi-axes of the ellipse is
equal to a, where a2 = I, with I written in the axes (l, r). Another system
of axes (l′, r′) is plotted rotated an angle irot anticlockwise with respect to
(l, r).
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the Stokes parameters are calculated as the time average of those defined in
Eqs. 3.16 to 3.19:

I (t) = 〈El (t) E∗
l (t) + Er (t) E∗

r (t)〉, (3.34)

Q (t) = 〈El (t) E∗
l (t) − Er (t)E∗

r (t)〉, (3.35)

U (t) = 〈El (t) E∗
r (t) + Er (t) E∗

l (t)〉, (3.36)

V (t) = i〈(El (t) E∗
r (t) − Er (t) E∗

l (t))〉, (3.37)

or, equivalently:

I = 〈al (t)
2 + ar (t)2〉, (3.38)

Q = 〈al (t)
2 − ar (t)2〉, (3.39)

U = 2〈al (t) ar (t) cos (ǫl (t) − ǫr (t))〉, (3.40)

V = 2〈al (t) ar (t) sin (ǫl (t) − ǫr (t))〉, (3.41)

or:

I = 〈a2 (t)〉, (3.42)

Q = 〈a2 (t) cos 2β (t) cos 2χ (t)〉, (3.43)

U = 〈a2 (t) cos 2β (t) sin 2χ (t)〉, (3.44)

V = 〈a2 (t) sin 2β (t)〉. (3.45)

In all cases the symbols 〈〉 mean average over a time much larger than 2π/ω.
The definition for the monochromatic light is a particular case of the one
for non-monochromatic situation, so we can take the latter as the general
definition.

Light with constant al/ar and (ǫl (t) − ǫr (t)) is called totally polarized
light. For this kind of light, the elongation, the inclination and the sense of
the polarization ellipse remain constant, but its size may change. For totally
polarized light Eqs. 3.42 to 3.45 transform into:

I = 〈a2 (t)〉, (3.46)

Q = 〈a2 (t)〉 cos 2β cos 2χ, (3.47)

U = 〈a2 (t)〉 cos 2β sin 2χ, (3.48)

V = 〈a2 (t)〉 sin 2β. (3.49)

As seen in Eqs. 3.46 to 3.49, Stokes parameters do not remain constant in
general for totally polarized light, but the ratio of any pair of them does. Re-
garding the polarization ellipse, for totally polarized light it remains constant
in shape and orientation, but its size may vary. If the amplitudes and the
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initial phases remain constant, the size of the ellipse will remain constant too
(monochromatic light). When no correlation exists neither between the am-
plitudes nor the initial phases of the components of the electric field, light is
called totally unpolarized light or natural light : (I, Q, U, V )t = (1, 0, 0, 0)t. In
this case, the polarization ellipse is not defined in eccentricity, nor in inclina-
tion, nor in sense, nor in size. Ratios between any pair of Stokes parameters
are not defined either. Between both of these extreme cases (totally polarized
and totally unpolarized light), we find partially polarized light, for which a
stable average polarization ellipse exists. In this case, ratios between pairs
of Stokes parameters vary in time, but they are distributed around a stable
average.

For the general case of non-monochromatic light the property given in
Eq. 3.32 is not always valid. A valid property for the general case is (see
[28]):

I ≥
√

Q2 + U2 + V 2. (3.50)

Another general property, and even more important, is the additivity
of the Stokes parameters [28]: If several incoherent light beams (with no
correlated phases) income on the same point at once, the observed Stokes
parameters at that point will be the summation of the Stokes parameters of
all beams.

3.2.3 Description of light in terms of flux and degrees
of polarization

Suppose a point source of light emitting radiation in all directions. Two
magnitudes are usually defined to measure how bright the source is:

• Flux : Imagine that we place a detector of elemental area dSdet in a point
P at a certain distance R of the source, with its surface perpendicular
to the direction of light. Suppose that an elemental amount of energy
dE comes onto the detector in an elemental time interval dt. Then, the
flux Φ at P is defined by:

dE = ΦdSdetdt. (3.51)

• Intensity : Let us now adopt the same assumptions as in the definition
of the flux, and consider as well that the solid angle subtended by the
detector is dΩdet. Then, the intensity In is defined by:

dE = IndSdetdΩdetdt. (3.52)
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Intensity and flux have the same dimensions. A difference between them
is that the intensity does remain constant along the path of light in a medium
without absorption, or scattering, or emission (vacuum, for instance). The
reason is that when moving far away from the source along the direction
of light, the energy that the detector receives per unit time and per unit
area decreases at the same rate as the solid angle subtended by the source.
Let us call W0 the energy emitted by the light source per unit time in all
directions. Then, the energy propagating per unit surface and per unit time
at a distance R from the source is W0

4πR2 . Since the solid angle subtended

by the detector can be written as dΩdet = dSdet

R2 , the intensity is given by
In = W0

4πdS2

det
dt

. All factors of the right side of the equation are constant, so

the intensity is constant.
In contrast, the flux measured at different distances from the source may

be different. Let us assume a certain solid angle dΩ with its origin in the
source. As light travels in straight lines, the energy of the light propagating
into the cone defined by dΩ cannot cross the wall to get out of it, and the
energy from the outside cannot enter. Let us assume now that the medium
of propagation does not absorb, or scatter, or emit radiation. Then, the
energy crossing an elemental surface dS per unit time will be the same at
all distances, but if R2 > R1, dS2 will be larger than dS1 (dS = R2dΩ).
Hence, the energy travelling per unit surface and per unit time decreases
while moving far from the source. On the other hand the surface of the
detector dSdet is constant, so according to Eq. 3.51 the flux decreases while
moving far from the source along the direction of light. Fig. 3.6 illustrates
the difference between flux and intensity.

Along the present work, not intensity, but flux will be used to describe
light.

As defined in Eq. 3.34, the first Stokes parameter I is proportional to the
flux Φ for a plane harmonic monochromatic wave.

The degree of polarization of a beam of light is defined as:

DP =

√

Q2 + U2 + V 2

I
. (3.53)

For totally polarized light DP = 1 (Eq. 3.32) and it is smaller than 1 for
any other case (Eq. 3.50).

We define the degree of linear polarization of a beam of light as:

DLP =

√

Q2 + U2

I
. (3.54)
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Figure 3.6: Light propagating from a point source through a medium without
absorption, or scattering, or emission. A detector with a fixed area dSdet is
located at two different distances from the source. Flux is represented on
the left panel. As the energy propagating through a spherical shell per unit
surface and per unit time is smaller for larger distances to the source, and the
surface of the detector remains constant, the flux decreases while increasing
the distance (Eq. 3.51). On the right panel the intensity is represented (see
Eq. 3.52 for definition). It is constant along the path of light because while
increasing the distance to the source, the energy propagating per unit area
and per unit time decreases at the same rate as the solid angle subtended by
the detector.

We refer as the extended degree of linear polarization to:

EDLP =
−Q

I
=

Ir − Il

Ir + Il
, (3.55)

with Il = (I + Q) /2 = E2
l and Ir = (I − Q) /2 = E2

r . In case that U = 0,
this magnitude in absolute value coincides with the DLP , but it contains
some more information: it is positive when the longest axis of the polarization
ellipse is close to the perpendicular to the scattering plane, and negative when
it is close to be parallel.

The degree of circular polarization is defined as:

DCP =
V

I
. (3.56)

For totally polarized light, we deduce from Eqs. 3.46 and 3.49 that the sign
of the DCP is equal to the sign of β. It is zero when the ellipse becomes a
line, i.e., when DLP = 1. The DLP will vanish when the ellipse becomes a
circle, i.e., DCP = 1.

We refer as circular polarization (CP hereafter), to the property of light
with a non-zero DCP . The DCP is the magnitude that accounts for the CP .
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We say that light is left-handed or right-handed circularly polarized when it
possesses a positive or negative DCP respectively (or vice versa, depending
on the criterion). There is no need in this work for establishing a criterion of
correspondence between (left-handed,right-handed) circular polarization and
(positive,negative) DCP .

3.3 Change of the plane of reference

Let us consider totally polarized light along the present section.
In Secs. 3.2.1 to 3.2.3, the scattering plane is assumed as the plane of

reference. Changing the scattering plane would lead to a change in the com-
ponents of the electric field El and Er, and equivalently, a change of the
parameters defining the polarization ellipse (Fig. 3.4). As a consequence,
the Stokes parameters may change, because they are defined as functions of
the components of the electric field vector (Eqs. 3.34 to 3.37) and also as
functions of the parameters defining the polarization ellipse (Eqs. 3.42 to
3.45). Fig. 3.7 shows a polarization ellipse (light travelling into the paper),
along with two systems of reference corresponding to the parallel and per-
pendicular axes of two scattering planes. Rotating the axes by an angle irot

anticlockwise produces a change in the orientation of the ellipse, but the size
and the shape remain the same. As I depends on the size of the polarization
ellipse only, and V depends on the size and the shape (see Sec. 3.2.2), these
two Stokes parameters remain constant when rotating the reference plane
around the direction of light. Parameters Q and U do change, because they
depend on χ:

Q′ = a2 cos 2β cos 2χ′ = Q cos 2irot + U sin 2irot, (3.57)

U ′ = a2 cos 2β sin 2χ′ = −Q sin 2irot + U cos 2irot. (3.58)

Thus, the transformation can be written as:









I ′

Q′

U ′

V ′









=









1 0 0 0
0 cos 2irot sin 2irot 0
0 − sin 2irot cos 2irot 0
0 0 0 1

















I
Q
U
V









. (3.59)

Although two Stokes parameters change when rotating the scattering
plane, the flux, the DLP and the DCP remain constant. For the flux and
the DCP it is obvious: they only depend on constant parameters I and V .
The DLP remains constant because Q2 +U2 does not depend on χ (see Eqs.
3.47 and 3.48).
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3.4 Some general hypotheses

To set the scenario of the processes we are going to study, we state the
following hypotheses:

Vacuum hypothesis : We are interested in studying the scattering of light
by dust particles in the comae of comets. In these systems the density of the
gaseous medium that surrounds the scatterers is supposed to be close to zero
[10]. As a consequence, for our calculations we can assume that radiation
propagates through vacuum, interacting with dust particles, but never with
atoms or molecules of gas.

Natural incident light hypothesis: Throughout this work, we will consider
the light coming from the source to be natural light, i.e., completely unpo-
larized. This hypothesis is based on the fact that solar light is unpolarized
(see, e.g., [12]).

Monochromatic plane harmonic wave hypothesis: After Fourier’s theorem
(see, e.g. [7]), any incident light can be written as the sum of a number of
monochromatic harmonic waves. Moreover, because of the linearity of the

Figure 3.7: Polarization ellipse (light travelling into the paper), along with
two systems of axes. The system (l′, r′) is rotated an angle irot anticlockwise
with respect to (l, r). The orientation of the polarization ellipse changes
when using a different system of reference, but neither the shape nor the
size. This means that changing the plane of reference affects Q and U , but
neither I nor V change.



3.5. THE LIGHT SCATTERING PROBLEM 43

Maxwell equations, the total scattered wave will be the sum of the individual
scattered waves corresponding to all components of the incident wave. By
joining both statements we conclude that we can reduce our study to incident
monochromatic harmonic waves. Furthermore, as comets (scatterers) use
to be at distances of the order of the AU (1AU ≈ 1.5 · 1011 m) from the
Sun (source) and from the Earth (observer), and we are dealing with visible
light, waves can be considered plane for both the incident and the scattered
beams in the comet. In summary, we can simplify our work by assuming
monochromatic plane harmonic waves.

Elastic scattering hypothesis : Hereafter, we will consider that the scat-
tering is elastic (see Sec. 3.1 for definition). For a dielectric material, the
tangential component of the electric field is continuous in the interface be-
tween vacuum and the particle [7], what implies that the wavelength of the
light coming onto the particle is the same as that of the scattered light. As
cometary dust grains are mainly formed by dielectric materials (see Sec. 2.3),
assuming elastic scattering is reasonable.

3.5 The light scattering problem

In this section we present a summary of the widely used techniques for solving
the light scattering problem, i.e., for obtaining the properties of the scattered
light from the properties of the incident light and those of the scatterers.

When x << 1, we say that particles are in the Rayleigh domain. In
that regime the DCP produced by the scatterers over the scattered light in
a single scattering event tends to zero. A complete study of the scattering
problem in the Rayleigh domain can be found in [35].

In the general case of any size parameter, there are two approaches to the
problem:

1. To think of a particle as a spatial discontinuity in the refractive index
of the medium and solve the Maxwell equations inside and outside the
scatterers.

2. To think of a particle as an ensemble of charges affected by the incident
field and calculate the radiated field.

Based on the first approach, a number of solutions of the scattering prob-
lem have been obtained (just for scatterers of simple shapes):

The analytical solution for isotropic and homogeneous spheres was achieved
by Lorenz in 1890 [39], and independently by Love in 1899 [40], Mie in 1908
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[47] and Debye in 1909 [11]. A solution for optically active spheres can be
found in Bohren, 1974 [1]. In 1955, Wait gave a solution for homogeneous
and isotropic infinite cylinders [70], which was extended by Bohren in 1978
[2] for the case of optically active cylinders. Finally, Oguchi in 1973 [58] and
Asano & Yamamoto in 1975 [59] found a general solution for homogeneous
and isotropic spheroids.

Also based on the first approach, two more advanced methods were de-
veloped. The first one is the T-matrix technique [51], which is devoted to
the calculation of the scattering matrix of rotationally symmetrical particles,
either in a fixed orientation or randomly oriented. There is a maximum size
parameter of particles for which the code can be compiled. The superposi-
tion theorem makes it possible to solve the problem for aggregates of spheres
with the T-matrix method [42]. This is a computationally fast algorithm
that calculates accurate results because it makes the orientation average an-
alytically. However, it is not able to perform calculations for asymmetrical
compact particles, and there is an upper limit to the size of the grains it
can deal with. The second advanced technique is the Finite Difference in
Time Domain (FDTD) method [67], which numerically solves the Maxwell
equations by using a finite differences technique. It can calculate the scat-
tering matrix of particles of any shape and size, but it is much slower than
the T-matrix. Its computational requirements (CPU time and memory) rise
when increasing the size of the particles and the accuracy of the calculations,
and in case we need an orientation average, it must be done numerically.

Finally, the Discrete Dipole Approximation (DDA) [16] follows the second
approach. It makes a summation of the fields of the radiant dipoles taking
into account the interaction between them. It is valid for grains of any shape
and any size, but it is very expensive in terms of computational resources.
The CPU time increases so fast when increasing the size parameter of the
particles, that the practical size limitation of this method is comparable to
that of T-matrix. Another drawback of DDA is that the orientation average
is made numerically, what implies a lack of accuracy compared to T-matrix.

3.6 The light scattering matrix

Although we do not have an analytical solution for all shapes of the scatterers,
we can deduce a general formalism for the scattering problem.
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3.6.1 Definition of the light scattering matrix

Let us assume that the distance R from a particle to the observer of the
scattered light is much larger than the maximum length in the scatterer (far
field zone approximation), and also much larger than the wavelength. Then,
there exists the linear relation between the electric field vectors of both the
incident and the scattered waves in a single scattering event by a single
particle [50]:

(

Esca
l

Esca
r

)

=
e−ikR+iǫ0

ikR
S (θ, ϕ)

(

Einc
l

Einc
r

)

, (3.60)

where (R, θ, ϕ) are the spherical coordinates of the position of the observer,
the origin being the scatterer cloud and the incident light beam travelling in
the positive sense of the direction of axis z (see Fig. 3.8).

S is the so called amplitude matrix. It is a 2× 2 matrix that depends on
the direction of the scattered beam, the wavelength of the incident beam, the
orientation of the scatterer particle and some intrinsic properties of it (size,
shape and complex refractive index).

Figure 3.8: Spherical coordinates system assumed to describe the scattering
event.

From the relation between the incident and scattered fields (Eq. 3.60),
we can deduce the relation between the Stokes parameters of the incident
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and scattered beams:

Isca =
1

k2R2
FpIinc, (3.61)

Fp being a 4 × 4 matrix called scattering matrix, given by:

F p
11 =

1

2

(

|S11|
2 + |S12|

2 + |S21|
2 + |S22|

2) , (3.62)

F p
12 =

1

2

(

|S11|
2 − |S12|

2 − |S21|
2 + |S22|

2) , (3.63)

F p
13 = Re (S11S

∗
12 + S22S

∗
21) , (3.64)

F p
14 = Im (S11S

∗
12 − S22S

∗
21) , (3.65)

F p
21 =

1

2

(

|S11|
2 + |S12|

2 − |S21|
2 − |S22|

2) , (3.66)

F p
22 =

1

2

(

|S11|
2 − |S12|

2 − |S21|
2 + |S22|

2) , (3.67)

F p
23 = Re (S11S

∗
12 − S22S

∗
21) , (3.68)

F p
24 = Im (S11S

∗
12 + S22S

∗
21) , (3.69)

F p
31 = Re (S11S

∗
21 + S22S

∗
12) , (3.70)

F p
32 = Re (S11S

∗
21 − S22S

∗
12) , (3.71)

F p
33 = Re (S11S

∗
22 + S12S

∗
21) , (3.72)

F p
34 = Im (S11S

∗
22 + S21S

∗
12) , (3.73)

F p
41 = Im (S21S

∗
11 + S22S

∗
12) , (3.74)

F p
42 = Im (S21S

∗
11 − S22S

∗
12) , (3.75)

F p
43 = Im (S22S

∗
11 − S12S

∗
21) , (3.76)

F p
44 = Re (S22S

∗
11 − S12S

∗
21) . (3.77)

The element F11 is usually called the phase function.
The scattering matrix depends on the same variables as the amplitude

matrix. Obviously, as well as the amplitude matrix, the scattering matrix is
dimensionless. We would also like to remark that Eq. 3.61 is valid just for a
single scattering event by a single particle, as it was Eq. 3.60, from which it
is derived.

Once we set the scattering plane, we can define it as the yz plane, so
that we can set ϕ = 0 (Fig. 3.8). Then, the elements F p

ij of the scattering
matrix will depend on θ for that scattering plane, and θ is what we defined
as the scattering angle in Fig. 3.1. Based on this, from now on we will write
the elements of the scattering matrix as F p

ij (θ). However, it is important
to remark that in general the scattering matrix will be different for different
scattering planes. One exception for this is the case that the sample of
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scatterers is a cloud of randomly oriented particles. Then, all planes are
equivalent, so the scattering matrix depends on the scattering angle, but not
on ϕ.

So far, we have just talked about scattering by one single particle, but in
real systems we find clouds of dust where lots of particles of different shapes,
sizes, compositions and orientations are mixed up. Thanks to the additivity
of the Stokes parameters (see Sec. 3.2.2), the formalism for a cloud of scatter-
ers is directly derived from the formalism for a single particle: the scattering
matrix of an ensemble of particles in conditions of single scattering can be
written as the sum of the scattering matrices of the single particles (Eq.
3.79). Single scattering conditions must be imposed because otherwise Eq.
3.61 would not be fulfilled, and that equality is used in the proof presented
in Eq. 3.78 (where marked with ∗):

Isca =

N
∑

k=1

Iscak

∗
=

N
∑

k=1

(

Fp

kI
inc
)

=

(

N
∑

k=1

Fp

k

)

Iinc = FIinc. (3.78)

Subindex k means the k-particle of the ensemble. According to Eq. 3.78 the
scattering matrix F of an ensemble of N particles is given by:

F =
N
∑

k=1

Fp

k. (3.79)

For the particular case of natural incident light, Iinc = (I inc, 0, 0, 0)
t
, just

by using Eq. 3.78 in Eq. 3.56 we see that the DCP can be obtained as:

DCP (θ) =
F41 (θ)

F11 (θ)
, (3.80)

and the EDLP , from Eq. 3.55, is:

EDLP (θ) = −
F21 (θ)

F11 (θ)
. (3.81)

Usually, when more than one kind of particles (shape, size or composi-
tion) is present in a cloud of scatterers and the scattering matrix of every
single type of particles is known, an averaged scattering matrix is used to
calculate the properties of the scattered light given the Stokes parameters of
the incident light, in conditions of single scattering. The reason for this is
derived from Eq. 3.78: The scattering matrix of the whole sample Ftot is the
sum of the scattering matrices of all particles in the sample. By using the
average, we are actually taking 1

N
Ftot as the scattering matrix of the sample.
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That introduces an error factor 1
N

in the calculation of the Stokes parameters
(Eq. 3.61), but it makes no difference when calculating the DLP , EDLP or
DCP , as defined in Eqs. 3.54 to 3.56. In conditions of multiple scattering
the scattering matrix of the sample is not simply the sum of the scattering
matrices of the individual grains, so the averaged scattering matrix is not a
good approximation to solve the scattering problem.

3.6.2 Some properties of the light scattering matrix

Let us suppose a scattering experiment with a single scatterer in a certain
orientation. We call the reciprocal experiment that in which the source and
the observer have been interchanged, but the particle has remained the same.
The reciprocal experiment can also be understood in the opposite sense:
instead of interchange the source by the observer, we can reorient the grain
in such a way that the experiment is the equivalent to the reciprocal. In such
a case we say that we have substituted the particle by its reciprocal particle.

Reciprocity theorem [50]: Suppose that the conductivity, the electric per-
mitivity and the magnetic permeability are symmetrical matrices for both
the material the scatterer is made of and the propagation medium. Then,
if the amplitude matrix for a scattering experiment in a certain configura-
tion is S, it will be [S]−t for the reciprocal experiment. In other words, when
changing a experiment by its reciprocal, the amplitude matrix is transformed
as:

(

S11 S12

S21 S22

)

−→

(

S11 −S21

−S12 S22

)

. (3.82)

As we assumed that the propagation medium is vacuum (Sec. 3.1), we are
always fulfilling half of the hypothesis of the theorem (the part regarding
the propagation medium). The other half (symmetrical matrices for the con-
ductivity, the electrical permitivity and the magnetic permeability of the
scatterer) means that optically active materials are excluded from the theo-
rem.

A transformation in the amplitude matrix directly leads to a transforma-
tion of the scattering matrix through Eqs. 3.62 to 3.77. Let us call REC the
application transforming the scattering matrix F of an scattering experiment
into the scattering matrix Frec of the reciprocal experiment.

The theorem cannot be extended for scattering samples made of many
particles. By considering the additivity of the scattering matrices (Eq. 3.79):

Frec =

N
∑

k=1

Frec
k =

N
∑

k=1

REC (Fk) 6= REC

(

N
∑

k=1

Fk

)

= REC (F) , (3.83)
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because REC is not a linear application in the space of 4 × 4 real matrices.
So in general, the fact that the reciprocity theorem is valid for every single
particle of a sample does not assure that it is valid for the whole cloud.

We say that a sample has reciprocity symmetry if for each particle of the
sample we can find one (only one) that is the reciprocal of the first.

Suppose a scattering event by a particle. We call the mirror particle of
the first one to the specular image of it with respect to the scattering plane.
If in a sample we change all particles by their mirror particles, the scattering
matrix transforms as follows:









F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44









−→









F11 F12 −F13 −F14

F21 F22 −F23 −F24

−F31 −F32 F33 F34

−F41 −F42 F43 F44









. (3.84)

The proof is simple: Suppose that initially we have a certain scattering
problem. When changing all particles by their mirror particles, changing the
sign of the coordinate Einc

r of the electric field of the incident beam makes
the problem equivalent to the initial scattering problem. Hence, the solution
must be the same as that of the initial problem, but changing the sign of the
component Esca

r of the scattered light, i.e., for the mirror particle:
(

Esca
l

−Esca
r

)(

S11 S12

S21 S22

)(

Einc
l

−Einc
r

)

. (3.85)

This is equivalent to:
(

Esca
l

Esca
r

)(

S11 −S12

−S21 S22

)(

Einc
l

Einc
r

)

. (3.86)

So the amplitude matrix is transformed as:
(

S11 S12

S21 S22

)

−→

(

S11 −S12

−S21 S22

)

. (3.87)

Considering Eq. 3.87 along with Eqs. 3.62 to 3.77, we obtain that the
transformation of the scattering matrix when changing a particle by its mirror
particle is exactly that in Eq. 3.84.

We say that there is mirror symmetry in a sample if for each particle we
can find one (only one) that is the mirror particle of the first.

Considering the transformations of the scattering matrix when changing
to the reciprocal sample (F → REC [F]) and the mirror sample (Eq. 3.84),
and considering the additivity of the scattering matrix (Ec. 3.79) as well, it
is simple to proof the following properties of the scattering matrix:
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1. If there is one (only one) reciprocal particle for each particle of a sample,
the scattering matrix can be written as:









F11 F12 F13 F14

F12 F22 F23 F24

−F13 −F23 F33 F34

F14 F24 −F34 F44









. (3.88)

There are left just 10 independent quantities in this matrix (functions
of the scattering angle).

2. If there is one (only one) mirror particle for each particle of a sample,
the scattering matrix can be written as:









F11 F12 0 0
F21 F22 0 0

0 0 F33 F34

0 0 F43 F44









. (3.89)

There are left just 8 independent quantities in this matrix. In this case,
the DCP given by the single scattering of natural light is zero, because
F41 = 0 (Eq. 3.80).

3. The combination of both of the previous conditions obviously leads to:









F11 F12 0 0
F12 F22 0 0

0 0 F33 F34

0 0 −F34 F44









. (3.90)

There are left only 6 independent quantities in this matrix. A real
scattering sample is usually made of lots of irregular particles in ran-
dom orientation. The random orientation assures that the reciprocity
simplification (Eq. 3.88) can be done in case that the reorientation
of the particles is fast enough for a particle to be oriented in both an
initial position and its reciprocal position during the time of a measure-
ment. On the other hand, random orientation assures mirror symmetry
if particles are symmetrical and again the reorientation is fast enough
for a particle to orient in both any position and its mirror position
during one single measurements. However, in most real cases, samples
are made of irregular particles without any plane of symmetry, and
such particles cannot become their own mirror images by re-orienting.
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In that case, a large amount of different irregular grains is needed in
order to have a particle similar to the mirror image of each one. With
many different irregular particles we would also have a particle similar
to the reciprocal for each one, so the random orientation would not be
necessary if the number of irregular grains were high enough. The com-
bination of both the presence of many different irregular particles and
the random orientation makes the double approximation (Eq. 3.90) oc-
curs in many practical cases, like measurements of scattering matrices
of mineral dust samples in the Amsterdam Light Scattering Laboratory
[27] and in the new IAA Light Scattering Apparatus in Granada [55].

4. Finally, the most simple scattering matrix is that corresponding to
homogeneous and isotropic spheres [3]:









F11 F12 0 0
F12 F11 0 0

0 0 F33 F34

0 0 −F34 F33









. (3.91)

Only 4 independent elements remain for this case.

In the case of Rayleigh scattering, the structure of the grains is not impor-
tant, because it cannot be distinguished. As a consequence, in the Rayleigh
domain, the same scattering matrix corresponds to particles of all shapes
for a fixed size. In particular, grains of all shapes have the same scattering
matrix as a sphere (see Eq. 3.91), for a given size. Fig. 3.9 shows an example
of the independent non-zero elements of the scattering matrix of a spherical
particle with x = 0.001, normalized to the phase function (the phase function
normalized to 1 at 30◦). The refractive index is set to m = 1.5 + i0.001.

3.6.3 Coherency test for the light scattering matrix

A compendium of necessary conditions that scattering matrices must fulfill
was given by Hovenier & Van der Mee in 1996 [29]. In that paper, they
also put forward a necessary and sufficient condition for a matrix to be a
scattering matrix. This condition is called the Coherency test, and was first
proposed by Cloude in 1986 [8]. It is quite a useful test for checking calculated
or measured scattering matrices. If we make a calculation or a measurement
of the scattering matrix F corresponding to a certain sample, and the test is
passed, we will not be able to assure that F is the scattering matrix of the
sample, but that it will surely correspond to the scattering matrix of some
sample.
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The test is quite simple to apply. If F = (Fij) is the matrix we want to
check, its coherency matrix T = (Tij) is defined as:

T11 =
1

2
(F11 + F22 + F33 + F44) , (3.92)

T22 =
1

2
(F11 + F22 − F33 − F44) , (3.93)

T33 =
1

2
(F11 − F22 + F33 − F44) , (3.94)

T44 =
1

2
(F11 − F22 − F33 + F44) , (3.95)

T14 =
1

2
(F14 − iF23 + iF32 + F41) , (3.96)

T23 =
1

2
(iF14 + F23 + F32 − iF41) , (3.97)

T32 =
1

2
(−iF14 + F23 + F32 + iF41) , (3.98)

T41 =
1

2
(F14 + iF23 − F32 + F41) , (3.99)

T12 =
1

2
(F12 + iF21 − iF34 + iF43) , (3.100)

T21 =
1

2
(F12 + F21 + iF34 − iF43) , (3.101)

T34 =
1

2
(iF12 − iF21 + F34 + F43) , (3.102)

T43 =
1

2
(−iF12 + iF21 + F34 + F43) , (3.103)

T13 =
1

2
(F13 + F31 + iF24 − iF42) , (3.104)

T31 =
1

2
(F13 + F31 − iF24 + iF42) , (3.105)

T24 =
1

2
(−iF13 + iF31 + F24 + F42) , (3.106)

T42 =
1

2
(iF13 − iF31 + F24 + F42) . (3.107)

This matrix has always four real eigenvalues. The test is passed if none
of them is negative.
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Figure 3.9: Independent non-zero relative elements of the scattering matrix
of an ensemble of spheres in the Rayleigh regime: x = 0.001. The refractive
index is set to m = 1.5 + i0.001.
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Chapter 4

Summary of observations

Abstract

A compilation of the published observations of the DCP in comets is
presented. Their common properties are emphasized so as to serve as a guide
for the study of the possible mechanisms producing circularly polarized light
in comets.

4.1 Introduction

In the 80’s, at the time of last Halley’s perihelion passage (1986), observa-
tions of the DCP of light scattered by comets were no reliable: they strongly
depended on the used instrument (see, e.g., the differences between observa-
tions of Halley by Metz & Haefner [46] and Dollfus & Suchail [14]) and in
many cases the errors were comparable to the mean values (see, e.g., [54]).
Hence, observations of Comet Halley are not very informative regarding CP .
The better information we can retrieve from them is that a persistent non-
zero DCP appears in the light scattered by that comet. By the time of
Hale-Bopp apparition in 1997, technology had evolved enough so as to re-
duce the width of the error bars by a factor 5-10 (see, e.g., [63]). Since then,
observations of the DCP in comets have been more frequent, and they have
become much more informative, because now the error bars are small enough
for us to recognize features in the curves of the DCP .

4.2 Observations of comets

A list of some significant observations of the DCP of light scattered in comets
is presented below. The more relevant features are pointed out.
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Halley by Morozhenko et al. [54]
The authors observed the head of Comet Halley by using a slit of 2.7′′ ×

81′′, which was set sun-ward with respect to comet’s optocenter (it did not
cover the nucleus). During the observations, performed in April 1986, the
phase angle changed from 34.8◦ to 21.1◦ and finally increased up to 27.8◦.
They obtained both positive and negative values of the DCP . For a wave-
length of 514 nm, the minimum was (−0.76 ± 0.27)% and the maximum
(0.37 ± 0.20)%. Mainly positive values were obtained for a wavelength of
484 nm, (−0.05 ± 0.15)% to (0.70 ± 0.28)%). In both cases the DCP was
very variable in time, not following a constant tendency.

Halley by Metz & Haefner [46]
Metz and Haefner [46] carried out other observations of Comet P/Halley

when the phase angle was near 66.1◦, with a filter centered at a wavelength
of λ = 560 nm. They used three different diaphragms of 10′′, 15′′ and 20′′,
with 10′′ corresponding to a length of roughly 9000 km at Halley’s distance.
Several parts of the comet were observed: central core, North, South, East
and West, although no further details are given in the paper regarding the
exact location of these regions. The authors obtained values of the DCP
in the range (−0.7 ± 0.0)% to (−2.2 ± 0.1)%, which were highly variable on
a short time scale (of the order of minutes only). The values of the DCP
obtained for the central core did not presented any special feature compared
to those for other regions. In the paper they claimed that the DCP was
reduced by a factor 3 when the aperture of 10′′ was replaced by that of 21′′.

Halley by Dollfus & Suchail [14]
Right and left handed CP of the light scattered by various regions of the

coma of Comet P/Halley was also observed by Dollfus and Suchail [14]. They
used a wide band filter covering the whole visible spectrum. The observed
DCP ranged from (−0.65±0.39)% to (1.18±0.48)%. The observations were
performed when the phase angle varied from 40.7◦ to 22.5◦. The DCP was
very variable in time for the same region. However, a significant decrease of
the DCP could be noticed when the aperture diameter changed from 7.3”
to a wider diaphragm (16.2′′ and 28.1′′). Not a large difference can be found
between the observed DCP for diaphragms of 16.2′′ and 28.1′′, because the
mean values are so small for those slits, that they are comparable to the error
bars. No special values or tendency was found for observations of regions close
to the nucleus of the comet. Dollfus & Suchail suggested in their paper that
results of observations by Metz & Haefner [46] may need confirmation.
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Hale-Bopp by Manset & Bastien [43]
The authors observed comet C/1995 O1 (Hale-Bopp) in April 1997. Their

values for the DCP at 684 nm ranged from (−0.24±0.02)% to (0.20±0.04)%,
for phase angles between 40◦ and 47.4◦. Most of the observations they carried
out corresponded to the nuclear region, and the obtained values of the DCP
were quite smaller than those of Comet Halley. Also in this case, a high time
variability of the DCP was found, and both positive and negative values
were equally obtained. All observations but one were performed by using an
aperture of 15.5′′. No significant difference was found for an observation of
the nuclear region with an aperture of 31.1′′.

Hale-Bopp by Rosenbush et al. [63]
Rosenbush et al. [63] found only negative circularly polarized light with

the DCP smaller than (0.26± 0.02)% for several areas of the coma of Hale-
Bopp and less than 0.08% at the nucleus (see Fig. 4.1). The observations
were made for a phase angle φ = 46◦. They used a blue-centered filter at
λ = 485±1 nm. They did perform just one observation of each region, so we
can say nothing about the time variability in this case. A fixed 10′′ aperture
was used.

Figure 4.1: Variation of the absolute value of the DCP of light scattered in
Comet Hale-Bopp with the distance to the nucleus. All values of the DCP
are actually negative. The DCP goes to zero when approaching the nucleus.
Credit: Rosenbush et al. [63].
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C/1999 S4 (LINEAR) by Rosenbush et al. [62]

The authors observed the DCP of light scattered by this comet in three
separate observing runs: June 28th - July 2nd, July 8th-9th and July 21st -
22nd, 2000, when the phase angle ranged from 60.9◦ to 122.1◦. The maximum
DCP reached up to ≈ 2%. Both positive and negative values were observed
along the runs: In June 28th, only positive DCP was detected. The next
day, mainly positive values were obtained, and positive and negative were
observed later, until mainly negative DCP was observed the last two days
(see Fig. 4.2). During this evolution, the phase angle was increasing all the
time from 60.9◦ to 122.1◦.

Figure 4.2: Empty circles represent the DCP along several cuts through the
coma and nucleus of Comet C/1999 S4 (LINEAR). Filled circles correspond
to a fit to the data. Credit: Rosenbush et al. [62].

As shown in Fig. 4.2, for most days, there exists a tendency of the DCP
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to approach zero in the nucleus vicinity.

C/2001 Q4 (NEAT) by Rosenbush et al. [61]

By using a wide R filter and a 10′′ diaphragm (4350 km at the comet
distance), the authors carried out DCP observations of Comet C/2001 Q4
(NEAT) from May 21st, 2004 to May 23rd, when the phase angle was φ = 76◦.
The higher observed DCP (in absolute value) was 0.4% approximately. A
high variability could be found between the results for the last two days.
A general tendency in all days is that the DCP approaches zero near the
nucleus region. The curves of the DCP as a function of the distance to the
nucleus is shown in Fig. 4.3.

Figure 4.3: DCP along several cuts in coma of Comet C/2001 Q4 (NEAT).
Except for the observations corresponding to May 23rd, the DCP approaches
zero in the nuclear region. Credit: Rosenbush et al. [61].

4.3 Conclusions

From the observational data reviewed in the previous section, we extract the
following conclusions:

• In all cases, the observed DCP for a certain region of the comet is
highly variable in time (day-to-day and even minute-to-minute varia-
tions).



60 CHAPTER 4. SUMMARY OF OBSERVATIONS

• The DCP approaches zero when the aperture of the diaphragm in-
creases in observations of Halley.

• For accurate observations, such as those of Hale-Bopp, and others ac-
quired later, the DCP approaches zero when looking at the nuclear
region of the comet.

• In most cases, both positive and negative values of the DCP are ob-
tained, except for two exceptions: observations of Hale-Bopp by Rosen-
bush et al. [63], where all obtained values were negative, and observa-
tions of Comet C/1999 S4. For the latter case, all observed values were
positive for the smallest phase angle (60.9◦). Then both positive and
negative values appeared at intermediate values of φ, becoming finally
mostly negative at φ ≈ 120◦.



Chapter 5

Candidate mechanisms to
produce circular polarization

Abstract

Based on symmetry arguments, a necessary condition for an ensemble of
particles to circularly polarize the scattered light is derived. According to
this condition, a complete list of candidate mechanisms to produce CP is
proposed.

5.1 Introduction

Several mechanisms that may give rise to CP in astrophysical environments
have been historically proposed:

• Alignment of non-spherical particles: this mechanism was first pro-
posed by Dolginov & Mitrofanov in 1976 [13]. The possible align-
ment mechanisms have been widely studied (see, e.g. [38]), but a good
agreement between the values of DCP observed in comets and calcu-
lations for particles aligned by any of these mechanisms has never been
achieved.

• Asymmetrical particles in random orientation: In 2006, Kolokolova et
al.[37] found values of the DCP much smaller than the observations
of comets by calculations of single scattering by some irregular aggre-
gates composed of identical optically inactive homogeneous spheres in
random orientation.

• Optical activity : To our knowledge, there are no explicit calculations
of the values that the DCP can achieve if the grains of the coma
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were optically active, although the mechanism is generally invoked as
a possible explanation to the observation of the DCP in comets (see,
e.g. [62, 61]).

• Multiple scattering : This mechanism is just mentioned by some authors
as a possibility (see, e.g. [46, 62]), but without proof.

We could just have tried the mechanisms listed above and may have
serendipitously found a good agreement between the results on the DCP
given by any of them and the observations in the scenario we are interested in
(comets in our case). However, a rigorous search for the origin of the observed
DCP needs for a systematic method to find a complete set of candidate
mechanisms, i.e., we must be able to make a list of possible mechanisms
giving rise to CP and assure that the actual responsible of the observed
values of the DCP is within that list.

To find a complete list we first studied a necessary condition for a mecha-
nism to produce CP . Later, we thought about all mechanisms fulfilling that
condition.

5.2 Necessary condition for circular polariza-

tion1

Let us consider a cloud of particles which is perfectly symmetrical around
the direction of the incident light. Such a system possesses certain symme-
tries, which means that it remains invariant after certain transformations,
for instance the reflection with respect to a plane through the axis of the
system, and the rotation by π rad about the same axis. Let us assume
that the DCP observed at a certain observation position O1 (Fig. 5.1) is
right-handed and consider what happens after applying both of the above
transformations. By applying the reflection with respect to a plane through
the system axis we obtain left-handed circularly polarized light when observ-
ing from O2, the opposite point of O1 (see left panel of Fig. 5.1). Rotating it
by π rad around the axis leads to right-handed CP in O2 (right panel of Fig.
5.1). As light cannot be right-handed and left-handed polarized in a certain
point at the same time, we deduce that the light scattered by a perfectly

1The result given in this section is included in the peer-reviewed publication [24], and it
was presented in three conferences: the 41st annual meeting of the Division for Planetary

Sciences of the American Astronomical Society (oral presentation), the 10th Asteroids,

Comets, Meteors meeting (poster presentation) and the XI Conference on Electromagnetic

& Light Scattering by Non-Spherical Particles (oral presentation).
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azimuthally symmetrical system around the direction of the incident light
cannot be circularly polarized at any scattering direction.

Figure 5.1: Transformations of circularly polarized light observed at a certain
point, under a mirror symmetry with respect to a plane through the direction
of the incident light (left) and upon a rotation by π rad around the same
direction (right). Angles ϕ and θ are the usual spherical coordinates.

The condition deduced above gives us a way to find mechanisms that
may circularly polarize light: anyone that breaks the symmetry of the system
around the direction of the incident light is a candidate. As the condition is
necessary, but not sufficient, we cannot be sure that all mechanisms breaking
the azimuthal symmetry are producing CP . We must check them one by one.

5.3 Possible mechanisms to produce circular

polarization

The condition deduced in Sec. 5.2 makes a constrain on the set of candidates
to give rise to the DCP : we just have to look for mechanisms that break the
symmetry around the optical axis. If we enumerate all ways to achieve such
asymmetry we will have a complete list.

The asymmetry of the system around the direction of the incident light
can be achieved by either the asymmetry of the ensemble of scatteres as a
whole (a), the asymmetry of the scatterers individually (b) or both (c). In
our particular case the whole cloud is a comet, and the individual scatterers
are the particles of the coma plus the nucleus.

a. Let us assume that the scatterers (both the particles of the coma and the
nucleus) are perfectly symmetrical (spherical homogeneous and isotropic
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grains)2. The only way of such a system to achieve asymmetry is the
inhomogeneous distribution of particles in the coma.

We would like to remark the fact that we are calling ”cloud of scatterers”
to the part of the comet that the observer is looking at, i.e., if a diaphragm
is used to observe a comet, only light coming from a local region will be
received, so that region will be the cloud of scatterers of the scattering
problem, instead of the whole comet. This means that even an ensemble of
spherical homogeneous and isotropic scatterers symmetrically distributed
around the direction of light may lead to an asymmetrical scattering sce-
nario if the observer focusses only on light coming from a certain part of
the comet, which is not placed in its center (see Fig. 5.2).

Let us assume that light coming from a non-central local region of a comet
(R1 in Fig. 5.2) is circularly polarized by any means. Then, if the comet is
symmetrical with respect to the direction of the incident light, the DCP
of light coming from the opposite region R2 will cancel that of the light
coming from R1. Let us prove it: if we observe light coming from R1

and R2 at the same time, we are looking at a system that possesses at
least two symmetries (rotation of π rad around the direction of light and
reflection on the plane Π indicated in Fig. 5.2). That is the same scenario
as presented in Sec. 5.2 to prove that an azimuthally symmetrical comet
around the optical axis cannot circularly polarized light. Thus, we deduce
that light coming from the system formed by regions R1 plus R2 cannot be
circularly polarized when seen from any scattering direction. This means
that the DCP of light coming from R1 (if it is non-zero by any means),
is canceled by that of light coming from R2.

As a corollary, if a region located in the geometric center of the comet is
observed, the DCP of light coming from it must be exactly zero at all
scattering directions.

In contrast, according to the previous statements, the local observation
of a non-central region of the coma is another candidate mechanism to
circularly polarize light scattered by comets. It is quite important to
consider this mechanism, because polarimetric observations of comets are
usually done with a diaphragm so that only photons coming from a small
region of the comet are taken into account (see Chap. 4).

b. Let us suppose now that the distribution of particles in a comet is perfectly

2In a real situation, however, the particles of the coma may be quite irregular [5], and
the nuclei are known to have irregular shapes, as well as some active areas and jets on its
surface [9].
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Figure 5.2: A non-zero DCP may arise in light coming from any non-central
region R1 of an azimuthally symmetrical sample. If only that region is ob-
served, the possible DCP will not be cancelled by the one of light coming
from the opposite region R2, so the observer may detect a non-zero DCP .

symmetrical around the optical axis3.

First of all, the grains might be either randomly oriented or not. Here-
after we will say that the particles are aligned if the are not in random
orientation, no matter whether they are in a fixed orientation or moving
somehow with less than three rotational degrees of freedom. For instance,
we say that a sample of prolate spheroids with their longest axes forming
90◦ with the direction of the incident light and 45◦ with the x axis are
aligned, but the same spheroids randomly oriented in a plane through the
optical axis are aligned too. The alignment of non-spherical particles can
break the symmetry around the direction of the incident beam, so it is
another mechanism to take into account.

In case that the particles of the coma are randomly oriented they can still
break the symmetry of the sample if they are asymmetrical themselves:
they have no planes of symmetry (macroscopically and/or microscopi-

3In a real case, the distribution of scatterers is inhomogeneous because of the presence
of active areas and/or jets on the surface of the nucleus [9], for instance.



66 CANDIDATE MECHANISMS

cally). In such a case, once we set a particle in a fixed orientation, there
is no way to find its mirror image by re-orienting it. This leads to an
asymmetry around the optical axis of the comet that can be understood
as follows: imagine a sample of identical asymmetrical particles. If at a
certain instant one of them is located in P1 (see Fig. 5.3) with a certain
orientation, there is no chance at all to find its mirror particle in P2, even
if the grains are randomly oriented, because mirror images are impossible
just by reorientation in the case of asymmetrical particles. This causes
that the system do not remain invariant under a reflection on any plane
through the direction of the incident light. As a consequence, we conclude
that the system is not azimuthally symmetrical with respect to the optical
axis and hence the scattered light may be circularly polarized.

Asymmetry of particles can be understood in two ways: macroscopic and
microscopic.

Figure 5.3: When we apply a reflection on a plane containing the direction
of the incident light in a symmetrical distribution of asymmetrical particles,
the result is not an equivalent system to the first.

Hereafter, we will refer to the macroscopic mirror symmetry just as “mir-
ror symmetry”. According to the above discussion, the breaking of the
mirror symmetry of the particles (coma made of particles with asymmet-
rical shapes) is a candidate to produce CP .

We will refer to the microscopic asymmetry as optical activity. We distin-
guish two kinds of optical activities: the one by mineral grains and the one
by organic substances. In mineral particles, molecules are much smaller
than the wavelengths of visible light, so they behave as Rayleigh scatteres,
i.e., point particles whose structure cannot be distinguished by light. In
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such a case the asymmetry of the molecules themselves is not important,
but the point is the non-symmetrical distribution of them in the particles:
grains of crystalline minerals that crystallize in a non-symmetrical system
are microscopically asymmetric. Amorphous minerals or cubic crystals,
for instance, are ruled out from the optical activity, because a macro-
scopically symmetrical particle made of such materials could become its
own mirror image just by reorientation. Regarding organic materials, the
situation is quite different, because they are made of macromolecules,
with sizes quite closer to the wavelengths of visible light than mineral
molecules (so light can distinguish its structure). If these molecules were
asymmetrical (like helixes, for example), they would break the symmetry
by themselves as though they were small particles, independently of how
they are distributed into a grain. The optical activity of both mineral and
organic particles is another candidate to give rise CP .

The asymmetry of the nucleus of the comet is also a possibility to break
the symmetry, around the optical axis. The asymmetry could be due to
different reasons, such as irregular shape, albedo inhomogeneities, etc.

c. A combination of the above mechanisms would lead to a combination of
asymmetry of the scatterers and the comet as a whole.

We have considered all possibilities, so now we have a complete list of
possible mechanisms. We will study them in detail in the following chap-
ters: alignment of non-spherical grains in Chap. 6, breaking of the mirror
symmetry in Chaps. 7 and 8, in Chap. 9, optical activity, and finally, local
observation of a non-central region of the comet, inhomogeneous distribution
of particles in the coma, and the effect of an asymmetrical nucleus, in Chap.
10.

5.4 Conclusions

• The breaking of the symmetry of a comet around the direction of the
incident light is a necessary condition for a mechanism to circularly
polarize the scattered light.

• A complete list of candidates to produce CP of light scattered in comets
is the following:

1. Alignment of non-spherical grains.

2. Breaking of the mirror symmetry.
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3. Optical activity of the material composing the particles.

4. Local observation of a non-central region.

5. Inhomogeneous distribution of particles in the coma.

6. Asymmetrical nucleus of the comet.



Chapter 6

Circular polarization of light
scattered by aligned particles

Abstract

The bombardment of non-spherical grains of the cometary coma by the par-
ticles of the solar wind is studied as a mechanism to produce the alignment of
the grains. It is found that micron-sized elongated particles can be aligned
in a few hours by this mechanism. Nevertheless, no CP at all is derived
from this alignment because the resulting system is symmetrical around the
direction of the solar incident light.

6.1 Introduction

As we stated in Sec. 5.3, we consider that particles are aligned if they are
not in random orientation, no matter whether they are in a fixed orientation
or not.

A long list of possible mechanisms for aligning particles has been proposed
since Dolginov & Motrofanov paper in 1976 [13]. In that paper the authors
already proposed four possible mechanisms for the alignment of dust in the
coma of comets: paramagnetic relaxation, gas streams and interaction of
the solar radiation and the solar wind with the grains. They deduced under
restrictive assumptions that the particles in the part of the coma turned
towards the Sun are aligned by radiative pressure, and the DCP of the
scattered light could reach 4% for silicate-like particles. After that paper, a
considerable progress has been made regarding the alignment mechanisms:
a recent complete review can be found in [38]. In spite of this, it is not clear
yet if the alignment really happens in cometary comae, and, in case it takes
place, what mechanism is the main responsible for that.
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6.2 Mechanism producing the alignment

If the alignment of non-spherical particles is the cause of the observed DCP
of light scattered in comets, the mechanism that aligns particles must be fast,
because a non-zero DCP is observed in the coma, even in regions relatively
close to the nucleus, and most of the particles in that zone were ejected from
the surface of the nucleus just some hours or days before [9]. As results
coming from previous works are not conclusive (see Sec. 6.1), we decided to
make an investigation by our own. We did not try to study all alignment
mechanisms one by one because this is beyond the scope of the present work.
Instead, we wondered how would grains align and what would it be the
typical alignment time for some simple mechanism over some simple kind of
particles. We considered rectangular prisms as grains of the coma, and we
developed a Monte Carlo model of bombardment by particles of the solar
wind in order to simulate their alignment. So the alignment mechanism that
we studied was interaction of dust particles with the solar wind. We chose
this one for two reasons:

• Comets, when observed, are located at a distance from the Sun of the
order of the AU , where the interaction of the dust grains of the coma
with the solar wind may be significant.

• To our knowledge, there are not explicit calculations of the alignment
time of particles by the interaction with the solar wind. Thus we wanted
to make a contribution to the solution of the problem of the alignment
by this study.

6.3 Description of the Monte Carlo bombard-

ment model

First of all, as we just wanted to investigate the effect of the alignment of
the particles, we considered a cometary nucleus and a distribution of grains
in the coma that are azimuthally symmetrical around the direction of light.
Let us now carefully describe what kind of dust particles of the coma we
assumed, what are the parameters describing the solar wind and how the
particles of the solar wind interact with the dust grains.

• Dust particles : For simplicity we supposed a comet located at 1AU
from the Sun. The reason for that is that at this position, the solar
wind is well characterized and it has a significant effect.
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We chose rectangular prisms (compact particles) as dust grains. We
used two shapes: a prolate prism with axes ratios 1:1:2 (A) and an
oblate prism with 2:2:1 (B). We set the dimensions of the particle (A)
as 0.1 µm× 0.1 µm× 0.2 µm. The dimensions of (B) are calculated so
that the volumes of both particles (A and B) are equal. We assumed a
density of 3 gcm−3 for the grains. This is a typical value for silicates,
and we already stated that silicates are one of the main components of
the cometary dust (see Sec. 2.3).

As we did not have any information on the initial state of rotation
of the grains, we supposed a certain initial angular velocity instead
of assuming the particles to be at rest. In this way, the alignment
may be slower than for particles at rest, and we wanted to consider
the most unfavorable scenario. We assumed an initial angular velocity
ω0 = 0.7 rad s−1. The actual initial rotation velocity might be much
higher, for instance, if the grains are dragged by a stream of gas ejected
at high velocity from the surface of the nucleus. However, we do not
have any quantitative information about this effect. The best we could
do was to assume an scenario closer to reality than having the particles
at rest at t = 0. We took as the initial rotation axis the longest,
because that corresponds to the more stable rotational state, and we
supposed that particles quickly go to that state by dissipating heat.
The dissipation could take place because grains are not perfect solid
bodies, and there might be some internal frictions when particles are
deformed due to rotation. Particle (A) was initially set with its longest
axis parallel to the direction of incidence of the flux, and particle (B)
started the simulation oriented with its shorter axis parallel to the flux.

• Solar wind : We assumed two important hypotheses:

1. The particles of the solar wind propagate in a uniform and con-
stant flux in the direction (and sense) of light. Here, we are implic-
itly making the assumption that the solar wind is not significantly
deviated from the radial direction of propagation by the magnetic
field.

2. The particles of the solar wind interact with the dust grains of
the coma as if the grains were in vacuum, i.e., it is assumed that
there is no interaction of the solar wind with the gas. We based
this hypothesis in the low vapor density of the coma.
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Table 6.1 shows the main characteristics of the solar wind at 1AU [57].

Composition 50% electrons,
48% protons, and
2% ions He+

Velocity vF 350 kms−1

Flux density 3 · 108 cm−2s−1

Table 6.1: Some properties of the solar wind used in the model of bombard-
ment.

• Interaction: Collisions were considered completely inelastic. This hy-
pothesis simplifies the calculations, as in this way we know that a solar
wind particle transfers all its angular momentum to the dust grain it
hits. Hence, the increment of the angular momentum of a grain after
a collision is dL = r × pp, where pp is the linear momentum of the
particle of solar wind before the collision (pp = mvF, where vF is the
velocity of incidence of the solar wind particle and m is its mass). From
dL, the new angular momentum of the grain is given as L′ = L + dL.
Then, by calculating the inverse of the inertia tensor I of the grain, we
obtain its new angular velocity as ω = I−1L. With the new angular
velocity, we apply a differential rotation, and get the position of the
grain an elemental time dt later. This process is repeated with parti-
cles sequentially randomly hitting on the visible side of the grain, at
the rate given by the flux density specified in Table 6.1.

To quantify the alignment of the grains, we define two orthogonal systems
of reference. One is fixed in the particle and the other one is external. The
system fixed in the particle has its axes coincident with the principal axes of
the prism. The external system of reference has the z axis in the direction
of propagation of the solar wind, but in the opposite sense (see 6.1).

6.4 Results on the alignment

As shown in Fig. 6.2, the prolate grain (A) is aligned with its longest axis
perpendicular to the direction of the incident flux. Despite its initial orien-
tation was the most unfavorable to achieve the alignment, it happens in less
than 1.8 · 104 s. Once it is aligned, (A) quickly rotates around its longest
axis, and that axis slowly randomly rotates around the direction of the so-
lar wind. As shown in Fig. 6.3, the oblate prism is not aligned even in a
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Figure 6.1: Particle and external systems of reference used to study the
alignment. The three upper plots correspond to particle labeled as (A), and
the lower panels to particle (B). The angles to quantify the alignment are
plotted too. The z axis of the external system is parallel to the direction of
the incident flux of solar wind particles, but points to the opposite sense.

longer time (2.4 ·105 s) than the prolate, despite it starts with its longest axis
perpendicular to the direction of the incident flux, which is the alignment
configuration of particle (A).

Thus, we can conclude that particles are aligned with their longest axis
perpendicular to the direction of the incident flux of the impinging particles.
As oblate particles do not have a well differentiated longest axis, they cannot
be aligned (at least as fast as prolate grains).

On the other hand, the alignment of (A) occurs in just a few hours, so if
this kind of alignment was the responsible for the observed DCP in comets,
we would have found a good candidate for mechanism to align the grains,
because it acts quite fast.

Nevertheless, this kind of alignment does not circularly polarize light at
all. The reason is that once the grains are aligned, their longest axes can
freely rotate around the direction of the solar wind (which is the same as
the direction of the incident light), and that is an azimuthally symmetrical
scenario around the optical axis of the system. Hence, according to Sec. 5.2,
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Figure 6.2: Evolution of the rotation of the prolate grain of dimensions
0.1 µm × 0.1 µm × 0.2 µm and density of 3 gcm−3, under bombardment
by the solar wind. In less than 1.8 · 104 s, it is aligned with its longest axis
perpendicular to the direction of the incident flux.

no CP can be achieved by this mechanism.
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Figure 6.3: Evolution of the rotation of the oblate particle with axes ratios
2 : 2 : 1, and the same volume and density as (A), under bombardment by
the solar wind. There is no alignment in 2.4 · 105 s.

6.5 Conclusions

• Prolate rectangular prisms of dimensions 0.1 µm×0.1 µm×0.2 µm with
a density of 3 gcm−3 are aligned in 1.8 · 104 s due to the bombardment
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by the solar wind particles at an heliocentric distance of 1AU .

• The alignment occurs with the longest axis of the particle oriented
perpendicularly to the direction of the incident light.

• Oblate particles with the same volume and density as the prolate ones,
but with axes ratios 2:2:1, are not aligned even in 2.4 · 105 s.

• If particles in comets were actually aligned and the responsible mech-
anism for the alignment was the bombardment by the solar wind, we
would not obtained any non-zero DCP , because the cloud of aligned
particles would be symmetrical around the direction of the incident
light.



Chapter 7

Circular polarization of light
scattered by asymmetrical
model particles

This chapter is based on the peer-reviewed paper by Guirado et al. entitled Circular

polarization of light scattered by asymmetrical particles [22]. Some of theses results were

presented in the IX Conference on Electromagnetic & Light Scattering by Non-Spherical

Particles.

Abstract

To clarify the possible contribution of asymmetry of particles to CP in
comets, some calculations of the DCP of light singly scattered by some kinds
of asymmetrical model particles were performed. We considered aggregates
of optically inactive homogeneous identical spheres in random orientation.
We analyzed the effect of changing the size of the particles, and performed
a size average. The effect of changing the refractive index and the shape of
the grains was studied too. The values of the computed DCP are generally
in the range of the observed ones for light scattered by comets (Chap. 4).

7.1 Introduction

As we stated in Sec. 5.3, if the particles in the coma of a comet are asym-
metrical, there is a chance for the scattered light to be circularly polarized,
even if the grains are in random orientation and homogeneously distributed
around a symmetrical nucleus.

Along this chapter we will be dealing with the calculation of the maxi-
mum DCP that a sample of randomly oriented asymmetrical particles can

77
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produce. Since we are primarily interested in the application to the cometary
environment, we will assume similar sizes and refractive index as have been
found for dust in comets (see Secs. 2.4 and 2.3). In this chapter, our purpose
is not to build a realistic model of a cometary coma to try to reproduce the
observations. Instead, we just want to develop the most simple model that
can tell us whether or not we must rule out single scattering by optically
inactive asymmetrical particles in random orientation as a mechanism pro-
ducing a significant DCP in comets. If we obtain very small values of the
DCP compared to the observations by assuming a very asymmetrical model
particle, this mechanism can be ruled out. If we obtain values of the DCP of
the order of the observations or larger, we will give another step by building
up a more realistic model.

In Sec. 7.2 we explain the theoretical basis of the mechanism that makes
asymmetrical particles circularly polarize the scattered light. Sec. 7.3 con-
tains the description of the model, and Sec. 7.4 includes an analysis of some
available codes to perform the required calculations plus a brief review of the
computational method that we finally chose. Numerical results are shown
and discussed in Sec. 7.5. Finally, in Sec. 7.7, the main conclusions are
given.

7.2 How asymmetrical particles produce cir-

cular polarization

We already discussed in Sec. 5.3 that, based on the condition given in Sec.
5.2, the presence of asymmetrical particles in the coma of a comet may lead
to a certain DCP of the scattered light. In this section, we present another
proof of the possibility of having CP by this mechanism. This proof is based
on symmetry arguments applied to the Stokes parameters. It is just valid
for the breaking of the mirror symmetry, and we are presenting it in order
to better understand how the mechanism works.

Suppose a collection of randomly oriented asymmetrical particles illumi-
nated by a plane-parallel beam of unpolarized light with flux vector (1, 0, 0, 0)t.
The flux vector of the singly scattered light at a certain distance, can gen-
erally be written as (a, b, c, d)t, using the scattering plane as the plane of
reference for the Stokes parameters. This flux vector depends on the scatter-
ing angle and the properties of the scattering particles. In what follows we
keep the scattering angle fixed. Let us now replace each particle by its own
mirror particle, but keeping the incident light unchanged. Because of sym-
metry, the scattered beam will become the mirror image with respect to the
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Figure 7.1: Vibration ellipses of two beams of light traveling in the direction
(and sense) given by the vector product r̂ × l̂. The plane through l̂ perpen-
dicular to r̂ is the scattering plane. The two beams are each other’s mirror
image with respect to the scattering plane. The orientations of the major
axes of the vibration ellipses are given by the angles χ and π − χ while the
handedness of the beams is opposite.

scattering plane of the original beam. Therefore, the flux vector of the scat-
tered beam can now be written as (a, b,−c,−d)t, since the last two Stokes
parameters must have changed their sign, as follows from their definitions
and Fig. 7.1. For details we refer to Hovenier et al. [28].

Next, we consider a collection of randomly oriented particles in which each
particle is accompanied by its own mirror particle. In this case the flux vector
of the scattered beam is the sum (a, b, c, d)t + (a, b,−c,−d)t = 2(a, b, 0, 0)t.
Clearly, the same is true for a collection of particles having a plane of sym-
metry (like spheres, spheroids, cubes, etc.), since these are their own mirror
images. So the DCP is d/a, −d/a and zero, respectively, in the three cases
considered. This explains how single scattering of unpolarized light by ran-
domly oriented particles can generate a non-zero DCP . Obviously, this can
also occur for a collection of particles in which a number of asymmetrical
particles is not accompanied by their own mirror particles, but a certain
unbalance exists.

7.3 Description of the model

In order to simplify the study, we did not take into account either the dis-
tribution of the particles on the coma or the presence of the nucleus. We
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considered a sample of optically inactive particles in random orientation and
calculated the DCP after single scattering of natural light. So, instead of
building a radiative transfer model of the comet, we just calculated the scat-
tering matrix of a sample of randomly oriented particles of a certain size,
shape and refractive index, and then apply Eq. 3.80 to obtain the DCP ,
(also Eq. 3.81 to obtain the EDLP ).

As we were interested in obtaining the largest possible DCP , we used
some model particles especially designed with very asymmetrical shapes. The
used particles are described in each section. Although compact grains have
been proven to explain many of the observed properties of cometary dust [52],
we used aggregates of spheres for our calculations because of the following
reason: We needed accurate calculations since the observed values of the
DCP are close to zero. Moreover, we needed to calculate the DCP for the
largest possible particles in order to approach the sizes of the real grains in
comets (see Sec. 2.4). The T-matrix technique for aggregates of spheres is the
best choice to solve this problem, because it makes the orientation average
analytically, so it is more accurate and faster than the other methods (see
Sec. 3.5).

Hereafter, when we refer to aggregates, we will denote by x the size
parameter of the monomers of the particle, and by X the size parameter
of the whole aggregate.

Along the present chapter, we will consider a wavelength λ = 500 nm.

7.4 Choice and description of the numerical

method

There exist at least two public available codes implementing the T-matrix
technique for multi-spheres: Mackowki & Mishchenko’s [42] and Xu’s [71].
In this section, we present an a analysis to determine which one is the most
appropriate for our calculations of the DCP . For such purpose, we made
some comparisons between T-matrix and DDA, and we eventually compared
results from both implementations of T-matrix.

The more widely checked DDA code is the one developed by Draine &
Flatau [17], although a recent new implementation by Yurkin & Hoekstra
[72] has arisen, which introduces some numerical improvements that reduce
the CPU time and memory consumption for calculations (see comparison
in [60]). However, this new code has not been optimized yet for randomly
oriented particles, and regarding this type of calculations it gives less accurate
results than Draine’s code [60]. Thus, we chose Draine’s implementation of
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the DDA method.

Figure 7.2: Asymmetrical model particle used for comparison of DDA and
Mackowski & Mishchenko’s T-matrix method. It is composed of 7 monomers.
All monomers are equal in size and refractive index.

First of all, we compared DDA Draine’s results with those by Mackowski
& Mishchenko’s T-matrix code. We used as a test particle the one described
in Fig. 7.2. We chose m = 1.5 + i0.001 as refractive index. Figs. 7.3 and 7.4
show the calculated DCP for the particle in random orientation for two sizes:
x = 0.5 and x = 1 respectively (or X = 0.96 and X = 1.91). In both cases
we built the particle with 69443 dipoles for DDA calculations. The choice of
the large number of dipoles was made to fulfill the criterion |m|kd < 0.1 (see
[17] for an explanation). For calculations of flux and the EDLP , |m|kd < 0.5
is enough, as stated in [17], but for the DCP we need better accuracy. We
made an average over 16000 orientations.

There is a good agreement between the results given by both methods,
so we can rely on both of them to calculate the DCP as a function of the
scattering angle with high accuracy.

In any case, we also checked Xu’s code by comparing its results to Mack-
owki & Mishchenko’s. We used the particle defined in the right panel of
Fig. 7.5. The size parameter of each monomer was set to x = 1, so the size
parameter of the whole grain became X = 2.92. This time we calculated the
EDLP for the particle in random orientation (Fig. 7.6) as well as the DCP
(Fig. 7.7) by both Mackowski & Mishchenko’s and Xu’s codes for multi-
spheres. We found significant discrepancies when comparing the computed
results to each other, especially in the DCP . This means that one of the
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Figure 7.3: DCP as a function of the scattering angle, calculated with DDA
and Mackowski & Mishchenko’s T-matrix, for the particle defined in Fig.
7.2, in random orientation. The size parameter of all monomers is x = 0.5
(X = 0.9565), and m = 1.5 + i0.001.

codes is not doing well. We had already checked Mackowski & Mishchenko’s
code, but, what is more, as seen in Fig. 7.6, Xu’s program gives some values
of the EDLP larger than 100%, what makes no sense. Hence, we definitively
ruled out Xu’s code for multi-spheres.

Based on the above analysis, we chose the freely available double preci-
sion superposition T-matrix code by Mackowski & Mishchenko [42] for our
calculations. As the results depend somewhat on the accuracy parameters
of the code, and we needed very accurate calculations because we expected
to obtain values of the DCP very close to zero, we changed the accuracy
parameters until the results became stable. The criterion for stability was
the following: we defined the relative error for each element of the scattering
matrix as

Fij(parameters1)−Fij(parameters2)

Fij(parameters2)
, with parameters2 ten times smaller

than parameters1. Then, we changed the parameters until the error was
smaller than 10−9 for all elements Fij of the scattering matrix. In order to
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Figure 7.4: DCP as a function of the scattering angle, calculated with DDA
and Mackowski & Mishchenko’s T-matrix, for the particle defined in Fig.
7.2, in random orientation. The size parameter of all monomers is x = 1
(X = 1.913), and m = 1.5 + i0.001.

make another checking of the results, we repeated some calculations using
DDA, and in all cases we found good agreement with results by T-matrix.

7.5 Results and discussion

In this section, we present results of a systematic study of the behavior of
the DCP when changing different physical parameters of the scatterers. In
all cases, the DCP is plotted as a function of the scattering angle.

7.5.1 The effect of changing the size of the particles

Let us consider a sample of identical aggregates. Each aggregate is made
of seven identical spherical monomers (left side of Fig. 7.5). We call these
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Figure 7.5: Asymmetrical particles used for the calculations. The left particle
(“snake particle”), is an aggregate of 7 homogeneous identical spheres. The
right one (“Mr Sanchez”), is made of 25 of these spheres.

particles “snake particles”. The refractive index is set to m = 1.5 + i0.001,
and the aggregates are randomly oriented. If we change the size of the
aggregates, while keeping constant the wavelength of the incident light, the
DCP changes as shown in Figs. 7.8 to 7.10.

From these plots, we can obtain three important conclusions. The first
one is that the DCP becomes generally higher (in absolute value) as the
size parameter grows from zero to a maximum. In this case the maximum
occurs for x = 1.8. For larger values of x, the mean amplitude of the curve
of the DCP gradually tends to zero, being reduced to almost zero at x = 10.
Obviously, for very small particles, the DCP is close to zero, as corresponds
to the Rayleigh regime (see Sec. 3.6.2). The second conclusion is that,
as the size parameter increases, the curve of the DCP always becomes more
complex, i.e. the number of maxima and minima becomes higher, so that the
DCP reaches both positive and negative values in a small range of scattering
angles for large aggregates. A possible explanation for this phenomenon
might be the following: when the size of the grains increases so that the size
of the monomers is comparable to the wavelength, light is able to perceive
the entire structure of the target, resulting in a more complex DCP curve.
The third and most important conclusion is that it is possible to produce a
DCP of the order of the observed values or larger, with a sample of particles
in random orientation, at least for the asymmetrical model particles that
we used. This result is based on test particles whose shape is surely very
different from the real particles, but as the DCP obtained is so large, we
cannot rule out the possibility of obtaining large values also for some kind of
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real grains.

7.5.2 Size distribution

In the previous section, we considered samples of identical particles. In a real
sample, however, particles of many different sizes coexist, and the scattering
matrix of the whole sample is the sum of the matrices corresponding to the
individual particles, weighted by the size distribution. According to this,
we investigated whether the DCP given by a sample of model aggregates of
different sizes is much smaller than the observed values. For this purpose, we
took the results of section 7.5.1 and some additional sizes, and we calculated
the DCP of the sample from the size-averaged elements of the scattering
matrix. To this end, we used a power-law size distribution with exponent

Figure 7.6: EDLP as a function of the scattering angle, calculated with
Xu’s and Mackoski & Mishchenko’s T-matrix codes, for the particle defined
on the right panel of Fig. 7.5, in random orientation. The size parameter of
all monomers is x = 1 (X = 1.913), and m=1.5+i0.001.
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Figure 7.7: DCP as a function of the scattering angle, calculated with Xu’s
and Mackowsi & Mishchenko’s T-matrix codes, for the particle defined on
the right panel of Fig. 7.5, in random orientation. The size parameter of all
monomers is x = 1 (X = 1.913), and m = 1.5 + i0.001.

−3, which is within the range of the values inferred for cometary dust (see
Sec. 2.4). Progressively increasing the number of elements in the average
led us to conclude that 26 different sizes, between 0.046 µm and 1.5 µm,
are enough to achieve convergence of the DCP for the snake-like aggregates.
Most of the points of the size distribution were concentrated in the range of
small radii, where the distribution function changes more rapidly.

In Fig. 7.11 we show that, even when we have a size distribution, we
obtain an appreciable DCP , that reaches a maximum of about 0.13%. This
value is of the order of the observations (see Chap. 4), so we cannot rule
out single scattering by optically inactive asymmetrical particles in random
orientation as a significant mechanism producing CP in different astrophys-
ical environments. It is still possible that some kind of real particles make a
significant contribution by this mechanism to the observed DCP . In order to
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Figure 7.8: DCP as a function of the scattering angle for different size pa-
rameters. The particles are snake-like aggregates composed of 7 monomers
(see left panel of Fig. 7.5). The refractive index is m = 1.5 + i0.001. The
curves correspond to small size parameters (Rayleigh domain), so the values
of the DCP are close to zero.

search for those particles, we have to find out what is the essential property
of the particles of Secs. 7.5.1 and 7.5.2 that makes them to give such a large
DCP .

7.5.3 Changing the absorption

In Secs. 7.5.1 and 7.5.2 we used a refractive index that is typical for silicates
at visible wavelengths. The reason is that silicates have been clearly identified
as one of the main components of dust in comets (see Sec. 2.3). However,
amorphous carbon, which has a higher value of Im(m), is an important
component of cometary dust too. In this section, we present an analysis
of the sensitivity of the DCP to variations in the imaginary part of the
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Figure 7.9: DCP as a function of the scattering angle for different size pa-
rameters. The particles are snake-like aggregates composed of 7 monomers
(see left panel of Fig. 7.5). The refractive index is m = 1.5 + i0.001. The
curves correspond to the size parameters for which the highest values of the
DCP are reached.
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Figure 7.10: DCP as a function of the scattering angle for different size
parameters. The particles are snake-like aggregates composed of 7 monomers
(see left panel of Fig. 7.5). The refractive index is m = 1.5 + i0.001. The
curves correspond to large size parameters.
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Figure 7.11: DCP as a function of the scattering angle for a power-law
size distribution of particles with exponent −3. The particles are snake-
like aggregates made of seven monomers (see left panel of Fig. 7.5). The
refractive index is m = 1.5+i0.001. The computations were performed for 26
sizes with req between 0.046 µm and 1.5 µm, with a wavelength λ = 0.5 µm.
Most of the used sizes are placed in the range of small radii.
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Figure 7.12: DCP as a function of the scattering angle for different absorp-
tions. The particles are snake-like aggregates composed of 7 monomers (see
left panel of Fig. 7.5). The size parameter of the monomers that form the
aggregate is x = 2 (X = 3.826), and the real part of the refractive index is
fixed to Re(m) = 1.5.

refractive index. For this purpose, we considered samples made of only one
kind of particles (regarding shape) of a fixed size. The particles are again
snake-like aggregates made of seven monomers (see left panel of Fig. 7.5).
The size parameter of a monomer is x = 2, so X = 3.826. The real part
of the refractive index is 1.5. We calculated the DCP as a function of the
scattering angle for several values of the absorption, from Im(m) = 10−6 to
Im(m) = 0.5. The curves for Im(m) smaller than 10−3 are not included
in Fig. 7.12, since they are very close to the curve for Im(m) = 10−3. We
conclude from Fig. 7.12 that the curves of the DCP tend to zero as the
absorption increases.

We also made some calculations for larger size parameters and we came
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Figure 7.13: DCP as a function of the scattering angle for different values of
the real part of the refractive index. The particles are snake-like aggregates
composed of 7 monomers (see left panel of Fig. 7.5). The size parameter
of the monomers that form the aggregates is x = 2 (X = 3.826), and the
imaginary part of the refractive index is fixed to Im(m) = 0.001.

to the same conclusion.

7.5.4 Changing the real part of the refractive index

Regarding the real part of the refractive index, we performed a study similar
to that in Sec. 7.5.3. The imaginary part was fixed to Im(m) = 0.001, and
the real part varied from Re(m) = 1.2 to Re(m) = 1.8. The results are
shown in Fig. 7.13. The behavior of the DCP in this case is exactly the
opposite to that obtained by changing Im(m), i.e., the values of the DCP
become generally larger (in absolute value) as the real part of the refractive
index increases.
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When Re(m) tends to one, we enter the domain of Rayleigh-Gans scat-
tering [68], where the DCP must get close to zero for all scattering angles.
This might be an explanation for the behavior observed in Fig. 7.13.

7.5.5 Changing the number of monomers of an aggre-
gate of constant size

In this section we start studying to what extent the exact shape of the par-
ticles determines the shape of the curve of the DCP as a function of the
scattering angle. As a first step, we analyzed the effect of changing the num-
ber of component monomers of the aggregate, keeping the size of the whole
particle constant. Again we took a snake-like shape, but this time the ag-
gregates were composed of 4, 13, 16 and 25 monomers respectively (see Fig.
7.14).

The size of the aggregates was X = 3.826 and we chose m = 1.5+ i0.001.
The results (see Fig. 7.15) clearly tell us that the higher the number of
component monomers is, the closer to zero the mean amplitude of the DCP
becomes. This behavior suggests that we would need aggregates made of
only a few monomers to reproduce high values of DCP . We can also see
in Fig. 7.15 how the complexity of the curves increases with the number of
monomers.

A possible explanation for the results of this section may be the following.
The peaks of the curves of the DCP are due to resonances in the interference
of light after interacting with the asymmetrical particle. These resonances
largely remain after averaging over all possible orientations. The number
of peaks of the curves of the DCP depends on the number of monomers
composing the aggregate. Indeed, as the number of monomers of the particle
increases, the number of maxima and minima of the curves of the DCP also
increases. The scattering angle of the peaks and their amplitudes might be
determined by the spatial distribution of the monomers in the aggregate and
the relation between the size of the monomers and the wavelength. In fact,
the mean amplitude of the curves decreases as the monomers become smaller.
This could be due to the fact that the optimal size-wavelength relation for
the resonance is lost.

7.5.6 Monomers of different sizes in the same aggre-

gate

So far, we have just used aggregates in which all constituent spheres have
the same size. It might be possible that the results we are obtaining are due
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Figure 7.14: Snake-like aggregates with different numbers of monomers. The
size parameter is the same for all aggregates, so the size parameter of the
monomers decreases as the number of monomers increases. Aggregates made
of 4, 13 16 and 25 monomers are shown.
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Figure 7.15: DCP as a function of the scattering angle for snake-like aggre-
gates composed of different numbers of monomers (see Fig. 7.14). The size
parameter of the aggregates is fixed to X = 3.826, and the refractive index
is m = 1.5 + i0.001.
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to that particular feature of the particles. In order to check this possibil-
ity, we compared some of the results we already obtained with some other
calculations for particles formed by monomers of different sizes. We built a
particle made of monomers of tree different sizes, distributed as indicated in
Fig. 7.16. The volumes of the monomers are V0 ±∆V , where V0 is a certain
reference volume, and ∆V is 0%, 10%, 20%, 30% and 50%. Note that all
particles have the same volume for the comparison to make sense.

Figure 7.16: Aggregate formed by 7 monomers of different sizes. There are
spheres of tree volumes: V0, V0 + ∆V and V0 − ∆V , and the total volume
of the particle is the same as if the volume of all monomers of the aggregate
was V0.

In Fig. 7.17 we can see that there are not important differences (either
qualitative or quantitative) between the results corresponding to ∆V = 0%,
∆V = 10%, ∆V = 20% and ∆V = 30%. However, somewhere between
∆V = 30% and ∆V = 50%, the DCP suddenly goes to zero for all scat-
tering angles. An explanation might be that the observable features of the
DCP curves are due to resonances that depend on relations between some
substructures of the particles. For monomers with very different sizes those
relations are not fulfilled and the resonances disappear. This result gives us a
certain freedom in the configuration of the aggregate, allowing us to consider
more realistic particles without loosing the high values for the DCP .
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Figure 7.17: DCP as a function of the scattering angle for snake-like ag-
gregates made of differently-sized monomers (see Fig. 7.16). The size pa-
rameter of the aggregates is fixed to X = 3.826, and the refractive index is
m = 1.5+ i0.001. The percentages indicated in the legend are the differences
in volume among the monomers composing the aggregate.

7.5.7 Changing the shape

The last step is to change the shape by a completely different one, and com-
pare the results with the ones coming from the snake-like shape for some sizes
(Sec. 7.5.1). The new shape is that of the Mr Sanchez particle, described in
the right panel of Fig. 7.5. It is made of 25 identical homogeneous spherical
monomers.

Figs. 7.18 and 7.19 show the results. In the first one we can see that for
small size parameters Mr Sanchez produces in general a lower DCP than the
snake particle. However, for large sizes, the mean amplitude of the curves of
the snake particle and Mr Sanchez are comparable, as shown in Fig. 7.19.

For a given size of the whole aggregate, the monomers composing Mr
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Figure 7.18: DCP as a function of the scattering angle for two different
shapes and two different sizes. The refractive index is m = 1.5+ i0.001. The
curves correspond to small size parameters.
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Figure 7.19: DCP as a function of the scattering angle for two different
shapes and two different sizes. The refractive index is m = 1.5+ i0.001. The
curves correspond to large size parameters.
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Sanchez are substantially smaller than those of the snake-shaped particle.
Consequently, if the argument posed in section 7.5.5 is valid, we should always
obtain a smaller amplitude for the curve of the DCP corresponding to Mr
Sanchez than the one corresponding to the snake. However, the amplitudes
are comparable for large size parameters. An explanation could be that for
large sizes, the groups of monomers of Mr Sanchez, namely his head, his
arms and his legs work as a monomer of a size close to the optimal for the
resonance.

This theory suggests that it might be possible to obtain large values of
the DCP for samples of real particles if their shape is asymmetrical and the
substructures responsible for the asymmetry are comparable in size to the
wavelength.

7.6 Primary and secondary peaks

A common explanation to results given in Secs. 7.5.1, 7.5.2, 7.5.5, 7.5.6
and 7.5.7 has been already suggested within the discussions corresponding
to some of those sections. Nevertheless, we would like to summarize that in
the present section, and clearly define the concepts of primary and secondary
peaks, because they will be used in the next chapter.

While increasing the size of particles for a fixed wavelength, two important
features appear in the curves of the DCP as a function of the scattering angle:

• When the size parameter of a grain rises over a certain limit Xp, the
substructures of the particle that produce the asymmetry (groups of
monomers), start to be non-negligible in size compared to the wave-
length of the incident light. Then, some peaks (maxima and minima)
appear in the curve: the primary peaks. Obviously, Xp is over the size
parameters corresponding to the Rayleigh domain (see Sec. 3.6.2). The
primary peaks are just a few, and both the number of them and the
scattering angles they are located at, remain fixed when varying the
size of the particles. The amplitude of these peaks do change with the
size of the grains: it is maximum when an optimal ratio exists between
the size of the substructures that produce the asymmetry in a particle
and the wavelength of the incident light, and decreases for smaller and
larger sizes.

• If we keep increasing the size of the grains up to a size parameter
Xs > Xp, other features appear in the curve: the secondary peaks.
This happens when the size of the individual monomers becomes non-
negligible compared to the wavelength. The number of these peaks
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systematically increases while the size of the grains rises. The scattering
angles they correspond to, are not fixed, but they change with the size
of the grains. The amplitude of the secondary peaks is maximum when
an optimal ratio exists between the size of the individual monomers of
an aggregate, and the wavelength. For the model particles studied in
the present chapter, the amplitudes of the secondary peaks are smaller
than those of the primary peaks.

Based on the above description, primary peaks seem to be due to reso-
nances by the substructures of the particles that produce the asymmetry, and
secondary peaks seem to correspond to resonances between the monomers.

Primary and secondary peaks, as described above, are an explanation of
the appearance and evolution of the different features of the curves of the
DCP as a function of the scattering angle, while increasing the size of the
grains (Sec. 7.5.1). They also can explain the result of the size average in
Sec. 7.5.2: As the secondary peaks appear at different scattering angles for
different sizes, they vanish in the average when enough sizes are considered.
On the contrary, primary peaks always appear at the same positions, so they
remain after adding the scattering matrices corresponding to different sizes.
As for both the size average and the case of X = 2.678, the DCP curves are
exclusively due to the primary peaks, the plot in Fig. 7.11 looks quite similar
to the blue line of Fig 7.8: same number of peaks, with the same shape at
the same positions appear at both plots. Increasing the number of monomers
of the snake-like particle in Sec. 7.5.5 makes the primary peaks to disappear
because the optimal size ratio between the substructures that produce the
asymmetry in the particle and the wavelength is lost. At the same time,
more secondary peaks arise while more monomers are added to the particle,
because new resonances appear. Using monomers of very different sizes to
form the grains makes all resonances to disappear, so both, the primary and
secondary peaks vanish.

7.7 Conclusions

• For the snake-like shape with seven monomers and m = 1.5 + i0.001,
the mean amplitude of the curve of the DCP is close to zero for small
size parameters (as corresponds to the Rayleigh domain), and then
grows as the size parameters of the monomers increases to x = 1.8, in
which case a maximum larger than 2% is found. When the size param-
eter becomes larger than x = 1.8, the amplitude decreases gradually,
becoming essentially zero for x = 10.
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• For the snake-like shape with seven monomers and m = 1.5+i0.001, the
complexity of the curves of the DCP increases always when increasing
the size of the particle.

• Single scattering of optically inactive asymmetrical particles in random
orientations can give large values of the DCP of the scattered light
(more than 2%), at least for a snake-like aggregate composed of seven
spherical monomers with m = 1.5 + i0.001.

• If we use a typical power-law size distribution, the curves of the DCP
corresponding to snake-like aggregates made of 7 monomers with m =
1.5+i0.001 still show values of the DCP of the order of the observations
(≈ 0.1% or less).

• Increasing the absorption of the particles makes the main amplitude of
the curves of the DCP to decrease, at least for snake-like aggregates
of seven monomers with x = 2 and Re(m) = 1.5. However, the effect
is the opposite if the imaginary part of the refractive index is fixed to
Im(m) = 0.001 and the real part is increased.

• By increasing the number of monomers of an aggregate, but keeping the
whole size constant, the number of maxima and minima of DCP curves
increases and the amplitudes of these decreases, at least for snake-like
particles with x = 2 and m = 1.5 + i0.001.

• It is not necessary that monomers composing the aggregates are equal-
sized to obtain high values of the DCP . In fact, the snake particle
gives almost identical curves of the DCP even taking for the monomers
volumes as different as V0, V0 + 30%V0 and V0 − 30%V0.

• If the snake particle made of 7 monomers is compared to the Mr
Sanchez particle (made of 25 monomers and more complex), the mean
amplitude of the curve of the DCP is larger for the snake at small size
parameters (X . 4), but it is comparable for both shapes if the size of
the aggregates is large enough (X & 7).

• The peaks of the curves of the DCP may be due to resonances. There
exist two types of peaks: primary peaks (fixed number, at fixed scat-
tering angles and due to resonances by the substructures that produce
the asymmetry of the particle), and secondary peaks (the number in-
creases with the size of the grain, not at fixed scattering angles and due
to resonances by the monomers).



Chapter 8

Circular polarization of light
scattered by irregular particles

Some of the results included in this chapter were published in [23] and presented in the X

Conference on Electromagnetic & Light Scattering by Non-Spherical Particles.

Abstract

A collection of irregular aggregates of identical spheres was built by using
a Monte Carlo implementation of a cluster-cluster aggregation model. The
behavior of the DCP as a function of the scattering angle was studied for
those particles. After averaging over a few sizes and shapes, the DCP rapidly
tended to zero, so we deduced that the asymmetry of the particles cannot
account for the observed DCP in comets.

8.1 Introduction

The results of the previous chapter did not definitively rule out the asym-
metry of randomly oriented particles as the responsible mechanism of the
observed DCP in comets, because the calculated values of the DCP were
comparable to the observations, even when averaging over sizes for a specific
model shape. As a consequence, a study regarding a collection of irregu-
larly shaped particles must be carried out. It is obvious that averaging over
a large number of randomly irregularly shaped particles will finally yield a
zero DCP , because there will be always a particle similar to the mirror par-
ticle of some other, so mirror symmetry will be achieved in the sample. In
the present chapter, we are not questioning this fact, but we are trying to
asses how many different shapes are needed to obtain a asymthotic behavior
of the DCP towards zero. For instance, if twenty or fifty different shapes
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are enough, we can inmediately disregard this mechanism, but if a number
larger than present in a comet is needed, the asymmetry of particles would
make a significant contribution to the DCP of light scattered in comets.

8.2 Building the aggregates1

We again work with aggregates of identical spheres as in the previous chapter,
because calculations of the scattering matrix of such particles is fast and
accurate by using the T-matrix method along with the superposition theorem
(see Sec. 7.4).

For the generation of the aggregates, we made a Fortran implementation
of both a particle-cluster aggregation (PCA) and a cluster-cluster aggregation
(CCA) Monte Carlo methods. The PCA process starts with a single sphere
in a fixed position (see the upper part of Fig. 8.1). A new sphere is then
attached to it in a random direction. From then on, the procedure consists
of adding a new sphere to any of the previously added in a random direction.
Then, it must be checked that the new monomer does not overlap with any of
the others. If it does, the last aggregated sphere has to be removed, and a new
attempt to aggregate a non-overlapping monomer is performed. For CCA,
several PCA clusters are built first, and then they are joined together (see
the lower part of Fig. 8.1). We stick them together in the following way: we
set one of the clusters in the origin, and we put another one far away from the
first (in such a way that they do not overlap), in a random direction. Then we
make the second cluster to approach the part of the aggregate that is already
formed, until both parts get in touch. For both PCA and CCA methods, the
coagulation process finished when the maximum distance between any pair
of monomers of the aggregate exceeds a certain upper limit (dc for PCA
and dp for CCA). This criterion is realistic, because the actual limitation
in the size of an aggregate is given by the maximum length of the particle:
the larger this length is, the stronger the centrifugal force may become for
the monomers at the edge. As the forces sticking together the monomers is
constant, aggregates are broken as a consequence of their rotation when they
exceed a certain size.

After building some random aggregates by both of these methods, we
made some preliminar calculations of the DCP derived from single scatter-
ing by these particles in random orientation. We found that CCA clusters

1The cluster-cluster aggregation model presented in this section was included in the
peer-reviewed paper by R. Vilaplana, J. Cantó, F. Moreno and D. Guirado entitled The in-

fluence of particle shapes and sizes in the CO ice stretching mode, accepted for publication
in Earth, Planets and Space in 2009 [69].
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Figure 8.1: Models of aggregation to build the particles. For PCA, identical
monomers are sticked together sequentially to the particle until the maximum
distance between two monomers is larger than a certain limit dc. For CCA,
several PCA aggregates a joined together until the maxium distance between
two monomers of the particle becomes larger than dp.

give higher values of the DCP , which makes sense, because CCA produces
aggregates with elongated substructures, which is favourable to the asym-
metry of the formed particles. Fig. 8.2 shows the difference between a PCA
and a CCA generated aggregate.

According to this, only CCA aggregates were considered for the rest of
this chapter. Some of the generated CCA shapes used for calculations in
Secs. 8.5 and 8.6 are shown in Fig. 8.5.

8.3 Description and validation of the numer-

ical method

As we already stated in Sec. 7.4, the implementation of the T-matrix tech-
nique by Mackowski & Mishchenko [42] is the best choice for our calculations.
Since only some checks for model particles have been performed on the code
so far (see Sec. 7.4), we add at this point some comparisons between the re-
sults given by Mackowski & Mishchenko’s T-matrix and Draine’s DDA [17]
for randomly built (irregular) grains. We made calculations for the three
aggregates shown if Fig. 8.4. A silicate-like refractive index was set for the
grains (Im(m) = 1.5+i0.001), for the same reasons as in the previous chapter
(see Sec. 7.4).
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Results on the DCP as a function of the scattering angle are shown in
Fig. 8.5. A satisfactory agreement between both methods was found.

To assure the accuracy of the calculations, we adopted two aditional cri-
teria:

• Checking that all calculated scattering matrices fulfill the coherency
test (see Sec. 3.6.3).

• Imposing the same criterion for stability of the calculations as in the
previous chapter (see Sec. 7.4).

8.4 Some examples for individual particles

Let us take any of the generated irregular aggregates, for instance, the one
shown in Fig. 8.6. We calculated the DCP of light scattered by this particle
in random orientation as a function of the scattering angle for m = 1.5 +
i0.001. Results for several sizes of the particle are shown in Fig. 8.7. We
found a number of features in this plot, that we compared to the those
corresponding to the snake-like model particle given in Fig. 7.2:

Figure 8.2: Two examples of randomly built aggregates. The particle on the
left side is formed by 151 monomers, and it was constructed by the PCA
method. The one on the right side is a CCA aggregate composed of 145
monomers. It is clear that PCA aggregates are more compact and close to a
symmetrically shaped particle than CCA. CCA particles are more likely to
be asymmetrical.
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Figure 8.3: Some of the generated CCA clusters that were used for calcula-
tions of the DCP .

• At small sizes, the primary peaks appear for the irregular particle as
well as for the model particle (see Fig. 7.8). It happens because the
light starts distinguishing the substructures of the aggregate (groups of
monomers) that produce the asymmetry, i.e., the size of such structures
becomes not negligible compared to the wavelength of the incoming
light.

• For larger sizes, the primary peaks increase their amplitude as in the
case of the model grains (Fig. 7.9). The reason is that the size of
the substructures producing the asymmetry of the particle becomes
comparable to the wavelength.
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• The secondary peaks arise for larger values of the size parameter, as in
the model particle (Fig. 7.10). We explained this fact by assuming that
for these sizes, the radius of the monomers is not negligible compared
to the wavelength (light starts to distinguish the individual monomers
of the particle, so a lot of resonances appear).

• All the above features are similarities between the DCP given by asym-
metrical model particles and irregular scatterers. The difference is that,
contrary to model aggregates, for irregular particles the primary peaks
have smaller amplitude than the secondary. This may be due to the fact
that the substructures producing the asymmetry are not as noticeable
in the irregular particles as they were in the model grains.

8.5 Averaging over sizes for individual shapes

As in Sec. 7.5.2, we assumed a power-law size distribution of particles with
an exponent −3. We considered one shape at a time and performed the
size average of the scattering matrix of particles of that shape in random

Figure 8.4: Three irregular aggregates of identical spheres. The size param-
eter of the monomers is x = 0.26 for all cases. Aggregate (a) is made of 93
monomers, so the size parameter of the whole particle is X = 1.19. For (b),
the number of monomers is 96, what yields X = 1.20. Particle (c) has a size
parameter of X = 1.14 because it is made of 83 monomers.
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Figure 8.5: Comparison of Mackowski & Mishchenko’s T-matrix code results
with Draine’s DDA calculations for the three irregular aggregates of identical
spheres plotted in Fig 8.4.

Figure 8.6: Randomly built CCA particle made of 93 identical monomers.
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Figure 8.7: The DCP as a function of the scattering angle for particle given
in Fig. 8.6. Three size parameters were considered for the same shape. The
refractive index is set to m = 1.5 + i0.001.

orientation. In order to perform an adequate sampling of the chosen size
distribution (power-law), we needed to consider a relatively larger amount of
particles in the lower size limit than in the upper size limit, as the power-law
function changes very rapidly for small sizes. Thus, we chose thirteen differ-
ent monomer size parameters x as follows: : 0.21, 0.22, 0.24, 0.26, 0.29, 0.31,
0.35, 0.39, 0.45, 0.52, 0.63. 0.79 and 1.05. The size parameter of an aggregate
made of NMON monomers can be calculated as X = (NMON)1/3x.

A representative example of the result after performing the average is
given in Fig. 8.8. It corresponds to the particle shown in Fig. 8.6, with
m = 1.5 + i0.001. The general appearance of the resulting curve is that
of the primary peaks: they appear because they are always located at the
same scattering angles and because they are produced by small particles,
which have a larger weight in the average according to the power-law size
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distribution. There is a little distorsion by the secondary peaks in the case
of randomly built aggregates because for this case they have a larger ampli-
tude than the primary ones. But they still do appear at varying scattering
angles depending on the size of the aggregate, so they should not make any
contribution to an average with a sufficiently high number of sizes sampling
the size distribution. When the secondary peaks dissapear, only the primary
peaks (with a small amplitude compared to model particles), remain. This
means that randomly built aggregates averaged over sizes for a fixed shape
produce a lower DCP that the model particles of Fig. 7.5.

Size averages were calculated for twelve different shapes. Table 8.1 shows
the maximum DCP (in absolute value) obtained for each average.

Figure 8.8: Average of the DCP as a function of the scattering angle, over
thirteen sizes, all of them corresponding to the same particle shown in Fig.
8.6. The refractive index was set to m = 1.5 + i0.001.
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Aggregate max |DCP | (%)
CCA1 0.083
CCA2 0.056
CCA3 0.308
CCA4 0.061
CCA5 0.082
CCA6 0.035
CCA7 0.170
CCA8 0.085
CCA9 0.106
CCA10 0.093
CCA11 0.094
CCA12 0.088

Table 8.1: Maximum values of the DCP as a function of the scattering angle,
obtained by size averages of twelve individual different shapes.

8.6 Averaging over shapes the size averages

Results on the effect of averaging over 12 shapes the sizes averages are plotted
in Fig. 8.9. Averaging the DCP curves over a number of shapes rapidly
leads to zero values of the DCP because the primary peaks are located at
different scattering angles for different shapes, so no constructive addition
is made when workin with the shape-averaged sample. According to this,
single scattering by randomly oriented irregular particles must be ruled out
as the responsible mechanism of the observed DCP in comets.

8.7 Conclusions

• Primary peaks have smaller amplitudes in randomly built aggregates
than in the asymmetrical model particles used in the previous chapter.

• Secondary peaks have larger amplitudes than primary ones in randomly
built aggregates.

• The DCP of a sample of particles averaged over sizes for a fixed shape
is mainly determined by the primary peaks, as in the case of model
particles.

• A lower DCP arises from a size-averaged sample of randomly built
aggregates of a fixed shape than for that of model grains.
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• The DCP rapidly tends to zero when building a sample with just a
few size-averaged shapes.

• Single scattering by asymmetrical particles in random orientation does
not make a significant contribution of the observed DCP in comets.

Figure 8.9: DCP as a function of the scattering angle for a sample averaged
over twelve shapes, each one averaged over thirteen sizes.





Chapter 9

Circular polarization of light
scattered by optically active
materials

Although all studies reveal that optically active materials are not the main
components of cometary dust, they must be carefully considered, because a
small percentage of those materials in the composition of dust grains could
be enough to circularly polarize the scattered light significantly.

Regarding mineral particles, searching for optically active materials means
searching for crystalline minerals with a non-symmetric christalization sys-
tem, as previously stated in Sec. 5.3. The only information we could obtain
about such materials in comets, is given by Min et al. [48]: they deduced a
volume abundance of 1.3% of chrystalline enstatite in Comet Hale-Bopp. En-
statite usually chrystallizes in the orthorrombic system, but at temperatures
as low as those prevailing in cometary environments, it might be present
in form of monoclinic chrystals, which are asymmetrical, so that they can
circularly polarize light.

Organic materials [65], and in particular some amines [21], were found at
very low abundances in the collected particles of Comet Wild 2 by Stardust
mission. Some of these amines are optically active.

As explained above, there exist evidences that optically active materials
are present in comets. Hence, the relevant question at this point is whether
they are abundant enough to produce a DCP on the scattered light compa-
rable to the observed. We decided not no initiate such an analysis, because
the mechanism of optical activity do not match with the main features of
the observations that we enumerated in Sec. 4.3: if optically active materi-
als are present in cometary comae, in principle there is no reason to think
that the distribution of them inside the coma is not homogeneous (in relative
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abundance). If it is homogeneous, it makes no sense that the observed DCP
decreases when increasing the aperture of the diaphragm, and there is no
reason for the DCP to tend to zero in the vicinity of the nucleus. According
to this, we decided to directly rule out this mechanism without any further
consideration.

Nevertheless, we would like to remark that some authors claim that the
observed DCP in comets has a predominant sign (see, e.g., [61]). Each
optically active substance polarizes light always in the same sense, so the
ocurrence of a predominant sense of CP would support the idea that the op-
tical activity is the responsible for the observed DCP in comets. Rosenbush
et al. [63] obtained only negative values of the DCP for different regions of
the coma of Comet Hale-Bopp at a phase angle of 46◦. Manset & Bastien
[43] observed mainly negative values as well for the same comet, the phase
angle varying from 47.4◦ to 40.0◦. However, we would like to point out that
observations at one single phase angle, or in a very narrow range of them, are
not enough to assure that the CP has a predominant sense in a comet. There
might be some dependence of the DCP on the phase angle. In fact, Comet
C/1999 S4 (LINEAR) was observed by Rosenbush et al. [61] for eight phase
angles varying from 60.9◦ to 122.1◦, and it is clear from the plots presented
in the paper, that the DCP is mainly possitive for the smallest phase angle,
and then it progressively changes to negative as the phase angle increases.
In conclusion, the predominant sign of the DCP in a comet could be due to
a phase angle dependence.



Chapter 10

Monte Carlo model of radiative
transfer in comets

Some results on the radiative transfer model described in the present chapter were pub-

lished in [24] and presented in three conferences: 41st annual meeting of the Division

for Planetary Sciences of the American Astronomical Society (oral presentation), the 10th

Asteroids, Comets, Meteors meeting (poster presentation) and the XI Conference on Elec-

tromagnetic & Light Scattering by Non-Spherical Particles (oral presentation).

Abstract

A Monte Carlo model of radiative transfer in comets has been developed.
It calculates the four Stokes parameters of the light scattered by particles
in the coma, assuming a certain distribution of the grains around a spheri-
cal nucleus. By applying this model, non-negligible values of the DCP were
obtained just by assuming conditions of multiple scattering by spherical opti-
cally inactive particles, and considering only light coming from a non central
small region of the coma of the comet, an asymmetrical distribution of dust
in the coma, or both. Nevertheless, these values are one or two orders of
magnitude below the observed, at least for silicate-like spherical particles.

10.1 Introduction

We have already analyzed all mechanisms regarding the particles of cometary
comae that are candidates to circularly polarize light. For none of those
mechanisms was necessary to consider the structure of the comet (a nucleus
and a certain distribution of particles in the coma). For the aligned particles
(Chap. 6), it was enough to consider a single grain, to calculate how it is
aligned and finally deduce that no CP could arise from grains that are aligned
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that way. In Chaps. 7 and 8 we just had to calculate averaged scattering
matrices of different ensembles of particles. To study the rest of the proposed
mechanisms in Sec. 5.4, it is necessary to consider the whole structure of
the comet: size and albedo of the nucleus, number density distribution of
dust particles in the coma, etc. Our model must account for facts like the
interaction of photons with the nucleus, the possibility of multiple scattering
of a photon before it escapes from the comet and the possibility to observe
light coming from a small region of the comet.

Available options for modelling were the the doubling adding method [28]
and a Monte Carlo model. The doubling adding thecnique is not suitable
for our study because it is meant for plane-parallel atmospheres. We could
have made the approximation of local plane-parallel atmosphere in a comet,
but that would not have permitted us to investigate the effects of the actual
structure of the comet on the scattered light. Therefore, we chose the Monte
Carlo technique. Our Monte Carlo model consist of launching photons into
a certain target, tracking their evolution until they are extinguished, and
recording all contributions they make to the outgoing light. Although large
computational resources (especially computational time) are needed to run
Monte Carlo codes, they are the most exact models to reproduce a real radia-
tive transfer process. New multicore desktop computers offer the possibility
of easily reaching statistical stability of the results of a Monte Carlo code in
a reasonably short computational time. We think that Monte Carlo models
should become the first option for modelling atmospheres in the near future.

There exist, at least, two previous approaches to the Monte Carlo mod-
elling of radiative transfer in comets. The first one was developed by Salo
in 1988 [64]. It consists of a model to compute the incoming energy to the
nucleus of a comet, considering external solar radiation and internal infrared
thermal re-radiation by the particles in the coma. The second one was devel-
oped by Moreno et al. in 2002 [53], and it deals with the outgoing radiation
of comets when illuminated by the Sun. Althoug this model calculates the
four Stokes parameters of light scattered in the comet, only results on the
flux and EDLP were presented, and no results were given on the DCP .

In this chapter, we present a similar model to that by Moreno et al., im-
plemented in a new code built from the begining with better routines and
numerical methods in order to improve the accuracy of the results and to
reduce the computational time to achieve statistical stability. These im-
provements are necessary to get reliable results concerning CP , because, as
seen in Chap. 4, we expect the calculated DCP to be close to zero.
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10.2 Multiple scattering as a mechanism to

produce circular polarization on a single

photon

Let us consider one single photon of natural light singly scattered by a sample
of particles fulfilling both the reciprocity and mirror symmetry conditions.
The initial Stokes vector of the photon is proportional to (1, 0, 0, 0)t, and
multiplying this vector by the scattering matrix of the sample (Eq. 3.90)
gives us the Stokes parameters of the scattered photon, which is proportional
to (F11, F12, 0, 0)t. The DCP of the singly scattered photon is zero, because
the last Stokes parameter Vsca is null (see definition in Eq. 3.56). It does
not matter how many photons compose the incident light beam, after adding
the Stokes vectors of all photons scattered in a certain direction (all with
Vsca = 0), the DCP of the integrated light will be zero. This means that in
conditions of single scattering, it is not possible to achieve any DCP even in
the case that the system is asymmetrical around the direction of the incident
light. This statement works as an example of the fact that the condition for
CP given in 5.2 is just necessary, but not sufficient.

Nevertheless, multiple scattering can circularly polarize a single photon.
The proof is simple: in the second scattering event, the scattering plane
changes, so the Stokes parameters of the singly scattered photon must be
transformed according to Eq. 3.59. After rotating the scattering plane by an
angle irot, (F11, F12, 0, 0)t becomes (F11, F12 cos 2irot,−F12 sin 2irot, 0)t. Still
the DCP is zero, as expected because I and V do not depend on the plane
of reference (Sec. 3.3). Multiplying the new Stokes vector by the scattering
matrix leads to:

(F 2
11+F 2

12 cos 2irot, F11F12+F22F12 cos 2irot,−F12F33 sin 2irot, F12F34 sin 2irot)
t.

Thus, the DCP of a single photon may be different from zero after two
scattering events.

Based on the last discussion, we have now two necessary conditions for
a comet to produce CP if the particles forming its coma are symmetrical,
optically inactive and randomly oriented:

• The part of the comet we are observing must be rotationally asymmet-
rical around the direction of the incident light.

• There must be some multiple scattering.
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10.3 Description of the model

Let us represent a comet by a spherical cloud of dust with a spherical solid
shell of radius RN in its center (see Fig. 10.1). The cloud extends to the
infinity but its particle number density distribution varies as 1

r2 with the dis-
tance r to the center of the system. Suppose that the relative abundances of
particles of each size is the same at all volume elements dV . This is called the
hypothesis of homogeneous coma, but it does not mean that the coma is ho-
mogeneous, because the number density of particles may be different at each
part. The cloud is illuminated from a far distance by a plane-parallel source
much wider than the solid nucleus. Photons of natural light are launched
from the source, their paths are tracked and when they escape to the infin-
ity, their Stokes parameters are transformed into spherical coordinates and
finally recorded along with the direction (θ, ϕ) of escape (see Fig. 10.1). In
this way, a complete map of the Stokes parameters can be obtained by adding
the Stokes vectors of those photons escaping in a given direction.

The system of reference used along the present chapter is also defined in
Fig. 10.1.

10.3.1 The particles of the coma

As we studied in Chaps. 6 to 9, there exist several mechanisms by which
particles may produce some DCP on the scattered light under certain con-
ditions. Since we did not want them to mix up with the multiple scattering
by an asymmetrical comet, we assumed spherical optically inactive particles
for the coma. We calculated the scattering matrices of the grains by using
Bohren & Huffman’s implementation of the Mie theory [3]. However, we
must note that the versatility of the model allows us to use any type of par-
ticles. An average scattering matrix over a size distribution was calculated
in all cases, and that is the matrix we used for every single scattering event.
This represents a real case in conditions of single scattering (see Sec. 3.6),
but if multiple scattering arises, it is just an approximation. The correct
option would be to use a different scattering matrix for each sphere size, and
use the size distribution to decide which one to use for each scattering event.
However, this would make the code much slower, so we decided to use the
approximation of average scattering matrix, even in conditions of multiple
scattering.

It is important to remark that for non-spherical grains in the coma, the
orientation average is also valid only for single scattering conditions. A scat-
tering matrix of all particles at each orientation should be calculated, and one
of them should be used at each scattering event for an exact representation
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Figure 10.1: Spherical cloud of dust with a solid spherical core. The system
is illuminated by a far plane-parallel source. Photons escape from the cloud
in any direction (θ, ϕ). The coordinate axes used along the present chapter
are set in the plot.

of a real comet.

10.3.2 Packets of photons

As we already stated in Sec. 3.4, natural light is used as incident light in
our model. The reason is that light coming from the Sun is quite close to be
totally unpolarized [12].

According to the photoelectric effect theory [18], when a photon interacts
with a grain of dust, it can be completely reflected or completely absorbed
by the grain, but never partially absorbed and reflected. This means that if
we launch single photons, we will not obtain any outgoing light for some of
them (those that are absorbed). For having better statistics in the results,
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it would be desirable to get several outgoing light recorded events for each
launch. There is a way to do this: launching packets of photons. Packets are
collections of photons travelling together. We call the weight of the packet
W to the proportion of the initial quantity of photons that still remains in
the packet after a number of interaction events. Obviously, the initial weight
of any packet is W = 1. We do not have to decide whether a packet is
absorbed or reflected by a particle: a part of it is absorbed and the rest is
reflected according to the single scattering albedo. In the same way, a part of
the packet interacts with grains, while the rest goes to the infinity or to the
nucleus, according to the probability of interaction with particles (given by
the optical depth of the path ahead of the packet). The weight of a packet
of photons is reduced each time that a part of it goes to the infinity or to
the nucleus, and after each scattering event (see Sec. 10.3.4 for a detailed
explanation). We track the evolution of packets until they vanish. We will
consider that a packet is extinguished when its weight becomes lower than a
certain limit Wmin.

The Sun is so far from comets that the wave front reaching a comet is
plane, and photons do not interact with the grains of the coma until they
are very close to the comet. To reproduce these facts, we set a plane source
of packets of photons at a distance Z0 from the center of the comet (see Fig.
10.1). To ensure that the source is far enough, we checked that the results of
the model are the same by using a distance Z0 as by considering 2Z0. We set
the launching platform circular with radius Rmax (Rmax ≫ RN). To ensure
we chose a correct value of Rmax we performed the same test as for Z0. To
make the flux uniform, as in the Sun, we did the following: Let us call ρ the
distance from the launching point to the center of the launching platform (see
Fig. 10.2), and PL the probability of a packet of photons to be launched from
a point within [ρ, ρ + dρ]. If we denote by pL the corresponding probability
density function, PL(ρ) = pL(ρ)dρ. If we divide the launching disk into small
rings, the uniform-flux condition means that the probability of a packet to be
launched from a specific ring must be proportional to the surface of that ring.
Assuming infinitesimal rings, this leads to PL(ρ) ∝ ρdρ, since the surface of
an infinitesimal ring is dS = 2πρdρ. As a consequence pL(ρ) ∝ ρ. We can
obtain the constant that we need to make this an identity by applying the
normalization condition

∫ Rmax

0
pL(ρ)dρ = 1. The result is:

pL(ρ) =
2ρ

R2
max

. (10.1)

The probability density given by Eq. 10.1, along with the probability distri-
bution sampling method described in Appendix A, easily lead us to a formula
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for sampling values of the initial ρ coordinate of the launched packets:

ρ =
√

ξRmax, (10.2)

where ξ is a random number uniformly distributed within [0, 1].
In order to improve the statistical stability of the model, we divided the

launching disk into NRING rings of equal surface (see Fig. 10.2), and we
launched one packet of photons from each ring, starting from the central ring
(actually a circle) and moving to the border sequentially. In this way it is
assured that packets are launched from all regions of the launching platform.
As rings have a certain width, the exact value of ρ for a packet to be launched

Figure 10.2: The launching disk is divided into a number of rings of equal
area (as many as launched packets). Then, one packet is launched from each
ring. For the inner rings, each packet is split into a number of sub-packets,
and each of them is launched from a different point [ρ, ϕ] into the ring. The
exact coordinate ρ that a sub-packet is launched from, is calculated in such
a way that the number of photons launched per unit area remains constant.
Coordinate ϕ is uniformly randomly distributed in [0, 2π].

from a certain ring [ρ1, ρ2] is obtained through the distribution given by Eq.
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10.1 and the method described in Appendix A as follows:

ρ = ρ1 +
√

ξ(ρ2
2 − ρ2

1). (10.3)

The angle ϕ (see Figs. 10.2 and 10.1) can be obtained as a uniformly dis-
tributed random number within [0, 2π].

A last issue to consider regarding the sampling of the launching coordi-
nates is that it is important to resolve the central zone of the launching disk
better than the outer part, in order to correctly account for the interaction
of light with the nucleus. If the central ring covers a zone wider than the
nucleus, then only one packet will be launched directly to it, and just a few
of them will be deviated into it from a nearby region. Hence, there will not
be good statistics for the incoming light on the nucleus, which is important
because the interaction of light with the nucleus affects the outgoing radi-
ation. The solution we adopted was to divide the launching platform into
3 zones: a)ρ ≤ RN , b)RN < ρ ≤ 10RN , and c)10RN < ρ ≤ Rmax, with
ndiv1 > ndiv2 > ndiv3. In zone a), ndiv1 sub-packets of weigh W = 1

ndiv1

are
launched instead of one only packet of W = 1. In region b) the division of
the packet is by ndiv2 and in region c) by ndiv3. When several sub-packets
are launched from the same ring, a different ρ and a different ϕ are sampled
for each of them.

10.3.3 Interaction of a packet of photons with the grains

Let Φ be the flux of the incoming light, and let us call σ the average scattering
cross-section of all particles in a certain volume element dV . Then, by the
definition of the scattering cross-section (see Sec. 3.1), the decrease of the
flux for light traveling a distance ds through dV is given by:

dΦ = −Φnσdl, (10.4)

where n is the particles number density in dV . By integrating, we obtain the
exponential decay law :

Φ = Φ0e
−τ , (10.5)

where τ =
∫ s

0
nσds′ is called the optical depth. It is a dimensionless magni-

tude. Suppose that n is the same at all points of the cloud (which is not the
case along the present study). Then, the mean free path of photons, which
is defined as

∫∞
0

nσe−τsds, would be 1
nσ

, and τ = nσs. Therefore, in the
case of n to be constant, the optical depth can be understood as the distance
measured in units of the mean free path, i.e., it gives an idea of whether
a photon is going to interact with particles when crossing a cloud or not.
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This is why it is usually interpreted that a cloud of particles with τ > 1 is
opaque, and it is translucent if τ < 1. We will call optical thickness to the
optical depth of the whole object, like a comet or a gas cloud. As the relation
between the optical depth and the distance is not linear, the optical depth
may be finite for an infinite distance (for example, if σ is constant and the
number density changes as 1

s2 along the path to the infinity).
The probability density of interaction of the packet of photons with a

grain is:

p(s) =
d(1 − Φ

Φ0

)

ds
= nσe−τ , (10.6)

which means that the proportion of photons that interact with particles
within [s, s + ds] is p(s)ds ∝ nσe−τds. Equivalently, the proportion of pho-
tons that interact with particles within [τ, τ +dτ ] is p(τ) ∝ e−τdτ . Let us call
τmax the maximum optical depth that a photon may travel (optical depth to
the infinity or to any obstacle). The normalization constant a1 of p(τ) can
be obtained from the normalization condition:

∫ τmax

0

a1e
−τdτ = 1 ⇔ a1 =

1

1 − e−τmax
⇒ p(τ) =

e−τ

1 − e−τmax
. (10.7)

Once the probability density function has been derived, we can apply the
general sampling method by using uniform random numbers (see Appendix
A):

ξ =

∫ τ

0

e−τ ′

1 − e−τmax
dτ ′ ⇔ τ = − ln[1 − ξ(1 − e−τmax)]. (10.8)

Let us now calculate the formula to translate physical distance to optical
depth and vice versa. As we made the homogeneous coma hypothesis (Sec.
10.3), σ is constant in the cloud, so we can write:

τ =

∫ s

0

σn(s′)ds′ = σ

∫ s

0

n(s′)ds′. (10.9)

To proceed, we need to assume some particular number distribution of grains
in the coma. For simplicity, we chose n(r) = a2

1
r2 , with a2 = constant. Let

us call τN the optical depth of the whole cloud from the surface of the nucleus
to the infinity in the radial direction. Then:

τN =

∫ ∞

RN

σn(r)dr = a2σ

∫ ∞

RN

dr

r2
⇒ a2 =

τNRN

σ
. (10.10)

By substituting a2 in Eq. 10.9 we obtain:

τ = τNRN

∫ s

0

1

r−2
ds′. (10.11)
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Figure 10.3: Initial (r0) and final (r) positions of a packet of photons. The
distance travelled in the direction of propagation ê is denoted by s. A non-
right triangle is formed by edges r, r0 and s, that can be solved by the law
of cosines.

The radial distance r is different from the distance s if the path of the
packet of photon is in a non-radial direction. In Fig. 10.3 it is clear that the
problem can be easily solved by the well-known law of cosines as follows:

r2 = s2 + r2
0 − 2sr0 cos α. (10.12)

As r0 · ê = −r0 cos α,
r2 = s2 + r2

0 + 2sr0 · ê. (10.13)

Combining Eqs. 10.13 and 10.11 leads to:

τ = τNRN

∫ s

0

(r2
0 + 2s′r0 · ê + s′2)ds′. (10.14)

By solving the integral in Eq. 10.14, we get:

τ =
τNRN

∆

(

arctan
r0 · ê + s

∆
− arctan

r0 · ê

∆

)

, (10.15)

if ∆ =
√

r2
0 − (r0 · ê)2 6= 0.

In the particular case that s → ∞, we just calculate the limit in Eq.
10.15:

τ∞ =
τNRN

∆

(

π

2
− arctan

r0 · ê

∆

)

. (10.16)

We can obtain s as a function of τ just by working its value out in Eq.
10.15 :

s = ∆ tan
∆τ

τNRN
+ arctan

r0 · ê

∆
− r0 · ê. (10.17)
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In the case that ∆ ≈ 0, we may have some numerical problems in applying
Eqs. 10.15 to 10.17. Having ∆ ≈ 0 means that r0 ≈ r0 · ê, i.e., r0 is almost
parallel (or anti-parallel) to ê. This happens to packets of photons launched
from the central region of the launching platform, before they interact with
any grain. The solution to this numerical issue is to build the equations
for the special case ∆ = 0, and use them when the actual ∆ is below a
certain minimum value ∆min. Let us go back to Eq. 10.14. There exist two
possibilities for ∆ = 0:

• r0 ‖ ê in the opposite sense (r0 · ê = −r0): packets of photons coming
into the nucleus in radial direction.

• r0 ‖ ê in the same sense (r0 · ê = r0): packets of photons travelling far
away from the nucleus in radial direction.

For packets of photons approaching the nucleus:

τ = −τNRN
s

r0(s − r0)
, (10.18)

and for those moving far away from the nucleus:

τ = τNRN
s

r0(s + r0)
. (10.19)

For the particular case that the packet goes to the infinity, we just calcu-
late the limit s → ∞ in Eq. 10.19:

τ∞ =
τNRN

r0
. (10.20)

Now we work s out from Eqs. 10.18 and 10.19. For packets of photons
approaching the nucleus:

s =
τr2

0

τNRN + τr0
, (10.21)

and for those travelling far away from the nucleus:

s =
τr2

0

τNRN − τr0
. (10.22)

For obtaining the optical depth to the nucleus τc, we just have to apply
Eq. 10.15 if ∆ > ∆min or Eq. 10.18 if ∆ ≤ ∆min, but in all cases we need the
distance to the nucleus sc. Let us call now r0 the position vector of a packet
of photons that points in the direction (and sense) of the unit vector ê. Fig.
10.4 shows a triangle where 2 edges and one angle are known. Therefore, the
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Figure 10.4: A non-right triangle with two known edges and one known
angle. The triangle can be completely solved by using the law of sines and
the law of cosines. Vector r0 is the position of a packet of photons that is
pointing to the nucleus, and ê is a unit vector in the direction (and sense)
of propagation of the packet. We are interested in obtaining the distance sc

from the position of a packet of photons to the surface of the nucleus.

triangle can be completely solved. By applying the well known law of sines
with the edges RN and r0, we obtain:

RN

sin αRN

=
r0

sin αr0

⇒ αr0
= π − arcsin

(

r0

RN
sin αRN

)

. (10.23)

On the other hand, αsc
= π − αRN

− αr0
. Substituting Eq. 10.23 here leads

to:

αsc
= − arccos

−r0 · ê

r0

+ arcsin

(

r0

RN

sin αRN

)

(10.24)

Applying the law of sines to edges RN and sc gives:

RN

sin αRN

=
sc

sin αsc

, (10.25)

and by substituting Eq. 10.24 we get:

sc = RN
sin αsc

sin αRN

. (10.26)
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In the particular case of αRN
= 0:

sc = r − RN . (10.27)

All equations derived in this section, are the base to track the paths of
the packets of photons. We present a detailed explanation about that in the
following section.

10.3.4 Paths of packets of photons

Imagine a packet of photons of weight W travelling in a certain direction ê.
There exist two possibilities:

• Packets pointing to the nucleus : Saying that a packet of photons points
to the nucleus is equivalent to say that there exists an intersection
between the straight line defined by the direction of propagation of
the packet ê = (ex, ey, ez) and the nucleus (a sphere of radius RN

centered at (0, 0, 0)). Suppose that the actual position of the packet is
r0 = (x0, y0, z0), and let sc be the distance to the nucleus. Then, the
intersection point (xc, yc, zc) with the sphere will be given by:

xc = x0 + scex

yc = y0 + scey

zc = z0 + scez

x2
c + y2

c + z2
c = R2

N .















(10.28)

From Eq. 10.28 we derive:

(x2
0 + y2

0 + z2
0) + 2scr0 · ê + s2

c = 0 (10.29)

Eq. 10.29 has a solution only if:

(r · ê) ≥ x2
0 + y2

0 + z2
0 − R2

N (10.30)

Eq. 10.30 gives a necessary and sufficient condition for a packet to
point to the nucleus.

Once that we know that a packet points to the core of the comet, we
do not have to decide whether it reaches the nucleus or it interacts
with a grain of the coma. Instead, we split the packet into two parts:
one going to the core and another remaining in the coma and forced
to interact with a grain. According to the exponential decay law (Eq.
10.5), if the optical depth to the core is τc, the part of the packet of
photons that reaches the nucleus is We−τc , so the part that remains in
the coma for interaction with grains is W (1 − e−τc).
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• Packets pointing to the infinity : Packets will point to the infinity when
not pointing to the nucleus. According to Eq. 10.5 the part of the
packet going to the infinity is We−τ∞ , and a weight W (1−e−τ∞) remains
in the coma for interacting with the particles.

When a packet of photons interacts with a grain, a part of it is absorbed and
the rest is scattered. We do not care about the absorbed part because we
are not interested in the infrared re-radiated light. If the initial weight of the
packet is W , the weight of the scattered packet will be ω̃W , where ω̃ is the
single scattering albedo of the particles of the coma (see Sec. 3.1). After each
scattering event of a packet of photons we check whether the new weight of
the packet is below the lower limit we set for extinction. If W < Wmin a new
packet is launched.

Fig. 10.5 shows some examples of paths of packets of photons along with
the weights of the packets at each stage.

The process of scattering of the packet of photons involves a number of
calculations that must be described: the updating of the position, the choice
of the scattering direction, the change from the old scattering plane to the
new one, and the final change from the last plane of scattering to the meridian
plane.

Updating of the position of the packet of photons : Consider that a packet
of photons is located in a position r0 while travelling in a direction ê. After
subtracting the part that goes to the infinity to the nucleus, another part
remains in the coma that is forced to interact with a grain. First of all,
we sample by Eq. 10.8 the optical depth that the packet will travel from
its present position to the point it will interact with a particle. Then, the
optical depth is converted into distance by the corresponding Eq. (10.17, or
10.21 or 10.22), and the position is updated as r = r0 + sê.

Choice of the scattering direction: To make a reasonable choice of the
scattering direction, we need a probability density distribution. Consider I
the first Stokes parameter of the light scattered by a grain. As it is propor-
tional to the flux (see Sec. 3.2.3), IdS is proportional to the energy that
crosses an elemental surface dS per unit time. Let us assume now that the
particles of the coma are randomly oriented. Then, the scattering matrix
does not depend on ϕ, so I does not depend on it either. The elemental
surface dS for a spherically symmetrical scenario is plotted in Fig. 10.6, and
it is clear from the plot that dS = 2πR2 sin θdθ. Therefore, I(θ) sin θdθ is
proportional to the energy scattered at each direction θ per unit time. Since
this is proportional to the probability of scattering at θ, the probability den-
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Figure 10.5: Evolution of the weight of a packet of photons. The packet
reduces its weight by a factor of (1− eτc) or (1− eτ∞), depending on whether
it points to the nucleus or to the infinity. The rest remains in the coma, and
when it interacts with a grain, the scattered part is reduced by a factor ω̃
(the single scattering albedo).

sity function of the scattering direction can be written as p(θ) ∝ I(θ) sin θ.
Just by applying Eq. 3.61 we obtain:

p(θ) ∝ [F11I0 + F12Q0 + F13U0 + F14V0] sin θ, (10.31)

where (I0, Q0, U0, V0) is the Stokes vector of the incident light. The function
given in Eq. 10.31 must be normalized to 1 each time we use it, because the
Stokes parameters of the incident light are different at each event.

Change from the old scattering plane to the new one: For the first scatter-
ing event of a packet of photons, the incident light is natural, so the Stokes
parameters are independent of the reference plane. But once the first scatter-
ing event occurs, the resulting Stokes parameters are written with regard to
the scattering plane. The scattering plane of the second scattering event will
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Figure 10.6: Elemental surface dS for a spherically symmetrical system. It
can be written as dS = 2πR2 sin θdθ.

be different, so the Stokes parameters of the incident light should be trans-
formed into the new reference plane before applying the scattering matrix.
The same applies for higher orders of scattering.

The scattered light of a scattering event becomes the incident light of
the following. Hence, that beam of light (let us call it intermediate beam) is
contained in both the last and the new scattering plane. As a consequence,
the change of the scattering plane always consists of a rotation around the
direction of the intermediate beam. This statement is illustrated in Fig.
10.7, where the intermediate beam is û2. To perform the change of reference
plane we first calculate the rotation angle irot anticlockwise when looking in
the direction (and sense) of propagation of light (see Fig. 10.7), and apply
the transformation given in Eq. 3.59 to the Stokes parameters.



DESCRIPTION OF THE MODEL 133

Figure 10.7: Diagram containing the directions of propagation of light and
the scattering planes of a packet of photons that undergoes two scattering
events. Light initially travelling in the direction (and sense) of û1 is scattered
and then it points in the direction (and sense) of û2. After the second
scattering event, û = û3. The angle irot rotates the first scattering plane
to make it coincident with the second anticlockwise when looking in the
direction (and sense) of propagation of light. That is the angle to use in Eq.
3.59 to transform the Stokes parameters from the old to the new scattering
plane.

Change from the last plane of scattering to the meridian plane: In order
to record the Stokes parameters of light outgoing the comet, we performed
two operations:

• We divided the whole sphere into small angular regions of ∆θ × ∆ϕ,
around directions (θ, ϕ). Then, we considered that all parts of packets
of photons escaping in a direction contained in one of those bins, are
actually travelling in the same direction. The intervals ∆θ and ∆ϕ
should be small enough to fulfill the latter hypothesis, but large enough



134 RADIATIVE TRANSFER MODEL

to obtain a statistically significant signal in each region.

• We changed the plane of reference from the last scattering plane to the
meridian plane at (θ, φ). To perform this operation we first calculated
the angle irot (see Fig. 10.8). This is the angle that rotates the last
scattering plane through the direction of light, to make it coincide with
the meridian plane. It is considered positive when the rotation is anti-
clockwise if looking in the direction (and sense) of propagation of light.
With irot, we can apply to the Stokes parameters the transformation
given in Eq. 3.59.

Once we divided the range of directions into bins, and changed the plane
of reference to the meridian plane at each bin, the Stokes parameters of all
packets of photons considered to escape in the same direction were written in
the same system of reference. Hence, they could be added. After launching
a sufficient number of packets of photons NPHOT to achieve statistical
stability, we obtained four maps corresponding to the four Stokes parameters
as functions of θ and φ, plotted with bins of ∆θ × ∆ϕ. Just by applying
definitions in Eqs. 3.55 and 3.56, we obtained maps of the flux, EDLP and
the DCP as functions of θ and φ.

Note: In all papers and books about radiative transfer we have studied,
authors always make any change of a reference plane into other with a mid-
dle change to a meridian plane (see e.g., [6, 28, 53]). The change to the
meridian plane only makes sense at the last stage of the path of light: when
it escapes from the coma and is going to be recorded. We avoided to make
these unnecessary rotations of the reference plane in order to make our code
computationally efficient.

10.3.5 Light reflection on the nucleus

The exact reproduction of the reflections of light on the comet nucleus surface
presents two problems:

• There not exist good approximations to simulate scattering by rough
surfaces. As far as we know, the most complete tool is the model
developed by Mishchenko and Travis in 1997 [49]. Even though, it is
just valid for surfaces with smooth slopes. This model is meant to
study the reflection of light on the surface of the ocean, and it is no
valid for rough surfaces.

• We do not have conclusive data about the properties of the typical
surfaces of the nuclei of comets.
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Moreover, we used a high value of the optical thickness τN of the comet
to ensure multiple scattering, since we deduced in Sec. 10.2 that this is
a necessary condition for CP to be produced by a comet coma with only
spherical optically inactive grains of dust.

The simplest model of reflection on a surface is the lambertian reflection
model. Packets of photons are reflected in a random direction by such surface,
and get totally unpolarized. We performed some tests and concluded that
for τN = 2.5, it does not make any difference to consider the reflections on
the nucleus. This is due to the fact that just a few photons reach the surface

Figure 10.8: Change from the last scattering plane of a packet of photons
to the meridian plane. Light travelling in the direction (and sense) of û1

is scattered and then it propagates with û = û2. We need to rotate the
scattering plane by an angle irot anticlockwise (when seen in the direction
and sense of propagation of light) to make it coincident with the meridian
plane. This change of the plane of reference permits us to write in the
same reference system the Stokes parameters of all the fractions of packets of
photons scattered in the same direction. In this way, their Stokes parameters
can be added.
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of the nucleus and just a small fraction of the reflected photons escape from
the coma. In addition, the typical surface albedo of comets is about 4%, as
we stated in Sec. 2.1.

Based on all arguments posed above, we decided to consider a totally
absorbent surface of the nucleus for the present study.

10.3.6 Common input parameters

Along the following sections, several calculations with the described radiative
transfer model are presented. Different input parameters were used for each
of them, but some of the inputs are common to all runs of the program. We
present these common input parameters in Table 10.1.

RN 5 km
Kind of particles spheres
Size distribution type power-law, exponent=−3.5
rmin 0.05 µm
m 1.6 + i0.001
ndiv1 100
ndiv2 10
ndiv3 1
Wavelength 0.5 µm
Wmin 10−8

∆min 10−10 m

Table 10.1: Input parameters of the radiative transfer model used for calcu-
lations presented in Secs. 10.4 to 10.7.

The specific parameters for each calculation are specified in the corre-
sponding section.

10.4 Checking the model

We performed several tests to check that the present model is correct and
that the code implementing the model is working correctly. All of them deal
with a perfectly symmetrical comet around the direction of the incident light.

Tables 10.1 and 10.2 contain the input parameters of the model used in
the following tests:

1. Based on the condition given in Sec. 5.2, the DCP must be exactly
zero for all scattering angles in case of a perfectly symmetrical comet



LOCAL OBSERVATIONS 137

NPHOT 108

NRING 108

rmax 20 µm
∆θ 1◦

∆ϕ 1◦

Table 10.2: Specific input parameters of the model that we used to calculate
the EDLP and DCP of light scattered by an azimuthally symmetrical comet
around the optical axis. These calculations were devoted to test the model
and the code.

around the direction of the incident light, independently of the optical
thickness of the coma. We made calculations for τN = 0.25, 1 and 2.5,
and we found the condition to be fulfilled for all cases.

2. As we are assuming that the comet is symmetrical around the direction
of the incident light, results on the EDLP must be independent of ϕ
for a certain θ. We do not need single scattering conditions for the
present test, but we set τN = 0.1 so that the calculations become also
valid for the next test. It is clear from Fig. 10.9 that the condition is
fulfilled.

3. In conditions of single scattering, the calculated EDLP must be equal
to −F12

F11

(Eq. 3.81) at all scattering directions. To assure the single
scattering conditions we set τN = 0.1. As the results on the EDLP
are independent of ϕ (see test 2), we randomly chose a value of the
azimuthal angle: ϕ = 309◦. In Fig. 10.10, the EDLP calculated
with the model is compared to the theoretical value derived from the
scattering matrix. The match is almost perfect, so that the test was
successful.

10.5 The effect of local observations

We can simulate the observation of a small region of the comet by imposing
the condition that only light escaping from a certain region of the coma will
be added to calculate the Stokes parameters in all directions. The region
of observation is defined as a cone in a direction (θloc, ϕloc) and an angular
width βloc (see Fig. 10.11).

If a fraction of a packet of photons is escaping from the coma, the con-
dition it must fulfill to be considered, is to come from the cone defined by
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Figure 10.9: DLP as a function of θ and ϕ. The result is independent of ϕ,
as corresponds to an azimuthally symmetrical comet around the direction of
the incident light. The optical depth is set to τN = 0.1.

(θloc, ϕloc) and βloc. Let us call r̂loc to a unit vector defined by coordinates
θloc and ϕloc:

r̂loc = (sin θloc cos φloc, sin θloc sin φloc, cos θloc). (10.32)

Let r0 = (x0, y0, z0) be the position of the fraction of the packet of photons
that escapes. The condition we have to impose is that r̂loc and r0 form an
angle smaller than βloc. This can be written as:

arccos
x0 sin θloc cos φloc + y0 sin θloc sin φloc + z0 cos θloc

x2
0 + y2

0 + z2
0

≤ βloc (10.33)

The input parameters used for calculations of the DCP of light coming
from a non-central region of the comet are listed in Tables 10.1 and 10.3.
Note that the intervals ∆θ and ∆ϕ are ten times wider than those chosen in
the previous section. This is necessary to achieve good statistics in each bin
∆θ × ∆ϕ because of two reasons:

• We are looking only at a small zone of the coma, so we are missing
most of the light scattered in the comet. Thus, the same computational
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Figure 10.10: Comparison of the EDLP calculated with the Monte Carlo
model to the theoretical value in single scattering conditions, derived from
the scattering matrix. The agreement is excellent.

NPHOT 108

NRING 108

τN 2.5
∆θ 10◦

∆ϕ 10◦

θloc 60◦

ϕloc 0◦

βloc 10◦

Table 10.3: Specific input parameters used to calculate the DCP of light
coming from a non-central local region of the comet (see Fig. 10.12).

effort to launch and track the evolution of the same number of packets
of photons as in the previous section is being performed, but a much
lower signal is being recorded at each bin.
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Figure 10.11: A small conical region of the comet (plotted in red) is defined
by angular coordinates (θloc, ϕloc) and an angle βloc. A unit vector r̂ is defined
by (θloc, ϕloc). Light that escapes from the comet is considered only if the
vector position r0 of the fractions of the packets of photons that escape is
contained into the red cone.

• We are using a much larger optical thickness than in Sec. 10.4 (25 times
larger), so much more absorption occurs in the coma, and the amount
of outgoing radiation energy is much lower for the same number of
launched packets of photons.

We checked the statistical stability by repeating the calculations with NPHOT =
8 · 108, and verifying the convergence of the obtained results.

Fig. 10.12 presents the results of the calculations on the DCP (left panel)
for rmax = 20 µm, along with an illustration of the meaning of the plot (right
panel).

The big light blue circle of the right panel of Fig. 10.12 represents the
comet. It is illuminated from the back. Only light scattered from a 10◦ wide
region was considered. That zone is marked in the figure by a small dark
blue circle. From that region, light is scattered in all directions. We just
present results for −90◦ ≤ ϕ ≤ 90◦ because the best statistics was achieved
for those angles.

We find three main features in the results presented in Fig. 10.12:
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Figure 10.12: Results for the calculations of the DCP with our radiative
transfer model (left panel). All parameters of the model are taken from
Tables 10.1 and 10.3, except for rmax, that is set to 20 µm. An illustration
of the meaning of the left plot is presented in the right panel. Only light
coming from a small region (small dark blue circle) is recorded. Radiation
is emitted in all directions from that zone. Only results for light scattered
at ϕ within [−90◦, 90◦] are presented, because the best statistics is achieved
within this interval.

1. The upper part and the lower part of the left panel of Fig. 10.12 are
color-complementary: the white bins of the upper part correspond to
the black bins of the lower part.

2. For angles close to the backscattering, higher values of the DCP (in
absolute value) are calculated than for forward-scattering angles.

3. The calculated values of the DCP are about one or two orders of mag-
nitude below those of the observations.

Feature (1) can be understood in terms of symmetry: if a certain DCP
appears by any means for positive values of the azimuthal angle, opposite
values must be given when observing from a direction with ϕ < 0. The proof
is again based in symmetry arguments, and it is identical to that given in
Sec. 5.2.
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Regarding feature (2), we think that this may be an argument to support
the idea that multiple scattering is the responsible for the observed DCP ,
because light scattered in the back direction has generally undergone more
scattering events that light passing by the comet with little interaction with
the grains of the coma. If multiple scattering along with asymmetry of the
observation scenario is the mechanism producing CP , it makes sense that
the more important the multiple scattering becomes, the higher values of the
DCP are reached.

About feature (3), we tried to achieve higher values of the DCP by mak-
ing calculations for larger particles. Results presented in Fig. 10.12 corre-
spond to particles with a maximum size of 20 µm. According to Sec. 2.4,
much larger grains may be present in the coma of comets (up to the order
of 1 mm). We performed calculations of the DCP for two samples with
rmax = 200 µm and rmax = 2 mm. The rest of the parameters of the code
were the same as for the result showed in Fig. 10.12.

The Mie scattering code implemented by Bohren & Huffman presents
some convergence problems when particles become as large as 2 mm. In order
to get accurate results, we used a large number of sizes to sample the size
distribution (5000), and adjusted the accuracy parameters of the program.
Both, the size distribution and the non-zero independent scattering matrix
elements (see Sec. 3.6.2) are plotted in Figs. 10.13 and 10.14, respectively.
All curves are smooth, and regarding the scattering matrix, conditions at
exact forward- and backward-scattering are fulfilled (see, e.g., [30]). These
arguments lead us to rely on the calculated size-averaged scattering matrix.

Fig. 10.15 shows the calculated DCP for the samples with rmax = 200 µm
(left panel), and for the sample of rmax = 2 mm (right panel).

The calculated values are of the same order of those obtained for rmax =
20 µm (Fig. 10.12). Hence, the local observation of a symmetrical comet
whose coma is formed by spherical grains, cannot explain the observed DCP
in comets.

10.6 Asymmetry of the coma

The distribution of dust particles around the nucleus of a comet might be
inhomogeneous. For instance, there might be active regions of the surface of
the nucleus in some specific parts, or there might be more sublimation in the
side of the comet that faces the Sun. This asymmetrical distribution could
lead to the asymmetry of the coma around the optical axis, so some DCP
could arise from this mechanism.

We divided the coma of the comet into two halves, the separation plane
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Figure 10.13: Power-law size distribution with rmin = 0.05 µm, rmax = 2 mm
and exponent δ = −3.5. The curve was sampled with 5000 sizes to make
smooth.

containing the direction of the incident light (see Fig. 10.16). An optical
thickness τN was set for one of the halves, and γτN for the other, with the
condition that the optical thickness must be larger than 1 at least for one
of the halves, in order to assure multiple scattering (otherwise no CP is
possible, as stated in Sec. 10.2). Then, the DCP of light coming from the
whole coma was calculated.

Some important modifications had to be introduced in the main equations
that govern the model (Sec. 10.3.3) to make it work for the coma described
in Fig. 10.16. In particular, Eqs. 10.15 to 10.22 are not valid for packets of
photons which path crosses both halves of the coma.
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Figure 10.14: Non-zero independent elements of the scattering matrix of
a sample of spheres with a size distribution as that given in Fig. 10.13.
The curves are smooth, and all necessary conditions at the forward- and
backward-scattering directions are fulfilled.

Suppose that a packet of photons located at P0 (see Fig. 10.16) takes
its next step to its destination Pd, where Pd might be the nucleus (A), the
infinity (B) or another point P2 in the coma (C). For each case, there exist
four possibilities:

1. P0, Pd ∈ τN

2. P0, Pd ∈ γτN

3. P0 ∈ τN , Pd ∈ γτN

4. P0 ∈ γτN , Pd ∈ τN

Some simple algebraic manipulations leads to the following equations for
the cases enumerated above:
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Figure 10.15: Results for the calculations of the DCP with our radiative
transfer model. All parameters of the model are taken from Tables 10.1 and
10.3, except for rmax, that is set to 200 µm for the left panel. Only results
for light scattered at ϕ within [−90◦, 90◦] are presented, because the best
statistics is achieved within this interval.
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if ∆ 6= 0, with ∆ =
√
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√

r2
1 − (r1 · ê)2. Longitude s1 is the

distance from P0 to P1 (see Fig. 10.16), and s2 = sc − s1.



146 RADIATIVE TRANSFER MODEL

Figure 10.16: Asymmetrical coma formed by two halves of different optical
thicknesses: τN and γτN . The optical axis is contained in the plane that
separates both parts. A packet of photons travels from a point (x0, y0, z0) in
one part to (x2, y2, z2) in the other crossing the interface plane at (x1, y1, z1).
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B2)

The same as in B1 but exchanging τN by γτN .
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√

r2
1 − (r1 · ê)2.
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The same as in B3 but exchanging τN by γτN .
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if ∆ 6= 0, with ∆ =
√
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0 − (r0 · ê)2.

C2) y0 < 0, ey < 0
The same as in C1 but exchanging τN by γτN .

C3) y0 ≥ 0, ey < 0

Let us suppose ∆ 6= 0, with ∆ =
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r0 · ê + sc

∆
− arctan

r0 · ê
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If τ ≤ τsep (τ given by Eq. 10.8):

s = ∆ tan
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∆
− r0 · ê. (10.40)
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C4) y0 < 0, ey ≥ 0
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Identical as in C3 but exchanging τN by γτN .

The special case ∆ = 0 for cases A1, A2, B1, B2, C1 and C2 are presented
below. For any other case ∆ cannot be equal to zero because a packet
of photons cannot cross from one half of the coma to the other in radial
direction.

A1) For packets of photons approaching the nucleus, Eq. 10.18, and for
those travelling far away, Eq. 10.19 (substituting in both cases τ by τc and
s by sc).

A2) The same as in A1 but substituting τN by γτN .

B1) Eq. 10.20.

B2) The same as in B2 but substituting τN by γτN .

C1) For packets of photons approaching the nucleus, Eq. 10.18, and for
those travelling far away, Eq. 10.19.

C2) The same as in C1 but changing τN by γτN .

NPHOT 108

NRING 108

τN 0.5
γ 10
∆θ 1◦

∆ϕ 1◦

Table 10.4: Specific input parameters of the model that were used to calculate
the DCP of light scattered by an azimuthally asymmetrical comet around
the optical axis (see Fig. 10.16).

Fig. 10.17 shows the DCP produced by an asymmetrical comet with
parameters given in Tables 10.1 and 10.4. Results for two different values of
rmax are shown: 200 µm on the left and 2 mm on the right panel. Despite
the artificial asymmetry that we imposed to the comet, no significant DCP
compared to the observations was achieved by this mechanism either.
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Figure 10.17: Results for the calculations of the DCP with our radiative
transfer model. All parameters of the model are taken from Tables 10.1 and
10.4, except for rmax, that was set to 200 µm for the left panel, and 2 mm
for the right one. Light coming from the whole comet is taken into account.

10.7 Local observation of an asymmetrical coma

Although mechanisms presented in Secs. 10.5 and 10.6 did not produce by
themselves values of the DCP comparable to the observations, a mixture of
both of them may give a different result. In the present section we calculate
the DCP given by the same system as presented in Sec. 10.6. Moreover,
the comet is locally observed as in the case presented in Sec. 10.5. The
observation region is located in the half of the coma with the highest optical
thickness (see Fig. 10.18). In this way, the maximum multiple scattering
conditions are assured.

Specific input parameters for this run of the model are given in Table
10.5, and results are presented in Fig. 10.19.

Slightly higher values of the DCP have been achieved than in Secs. 10.5
and 10.6, but still the calculated values are one or two orders of magnitude
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Figure 10.18: Target system to study in the present section: a comet is
divided into two parts of different optical thicknesses, with multiple scattering
at least in one of them. It is observed locally, i.e., just light coming from a
certain small region of the coma is recorded. This region is located in the
half of the coma with the highest optical thickness.

below the observations. However, we still rely on multiple scattering as
the responsible mechanism of the observed DCP in comets because of the
following reasons:

• As pointed out in Sec. 4.3, two common features to several observa-
tions of the DCP in comets are the tendency to the DCP to vanish
when approaching the nucleus and when increasing the aperture of the
used diaphragm. Local observation in a multiple scattering scenario
is an explanation for both of these features, but the other discussed
mechanisms can hardly be compatible with these facts.

• All mechanisms based on multiple scattering that we have studied in
the present chapter, systematically give a non-negligible DCP , just one
or two orders of magnitude below the observations.
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NPHOT 107

NRING 107

rmax 200 µm
τN 0.5
γ 10
∆θ 10◦

∆ϕ 10◦

θloc 60◦

ϕloc 270◦

βloc 10◦

Table 10.5: Specific input parameters used to calculate the DCP of light
coming from a non-central local region of an azimuthally asymmetrical comet
around the optical axis (see Fig. 10.18).

Figure 10.19: Calculations of the DCP with our radiative transfer model for
a locally observed asymmetrical comet around the direction of the incident
light (see Fig. 10.18). All parameters of the model are taken from Tables
10.1 and 10.5.

• Our calculations only deal with spherical particles, and grains with
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more realistic shapes may yield higher values of the DCP .

• We are considering only silicates, but not carbon-like refractive indices.
Changing the refractive index in the calculations may lead to values of
the DCP comparable to the observations.

Using non-spherical (even asymmetrical) particles may yield highest val-
ues of the DCP . To make a good approximation to a real comet, we need to
calculate the scattering matrices of non-spherical particles with sizes ranging
from the order of 0.1 µm to 1 mm approximately (see Sec. 2.4). Techniques
described in Sec. 3.5 are adequate to obtain the scattering matrices of par-
ticles of the order of the wavelength, and ray-tracing models [56] can make
accurate calculations for particles much larger than the wavelength. For ir-
regular shapes, there is still a wide range of sizes whose scattering properties
cannot be calculated by any known method.

10.8 Conclusions

• A new model of radiative transfer in the coma of comets has been
developed, including any kind of particles either in conditions of single
or multiple scattering.

• A certain DCP appears in an azimuthally symmetrical comet if we
break the symmetry of the system by considering only light coming
from a non-central zone of the comet in conditions of multiple scatter-
ing. However, the obtained values of the DCP are one or two orders
of magnitude below the observations when using spherical silicate-like
particles for the dust grains of the coma.

• A non-negligible DCP arises when integrating all light coming from
a non-symmetrical comet (coma divided into two part with very dif-
ferent optical thicknesses, the optical axis contained in the plane that
separates both parts). Again the values are one or two orders of mag-
nitude below the observations. Observing just a small region of the
high-density half of the coma does not lead to results comparable to
the observations either.

• Using non-spherical particles or a carbon-like refractive index for the
grains of the coma may yield higher calculated values of the DCP .
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Conclusions

Regarding the observations:

• In all cases, the observed DCP for a certain region of the comet is
highly variable in time (day-to-day and even minute-to-minute varia-
tions).

• The DCP approaches zero when the aperture of the diaphragm in-
creases in observations of Halley.

• For accurate observations, such as those of Hale-Bopp, and others ac-
quired later, the DCP approaches zero when looking at the nuclear
region of the comet.

• In most cases, both positive and negative values of the DCP are ob-
tained, except for two exceptions: observations of Hale-Bopp by Rosen-
bush et al. [63], where all obtained values were negative, and observa-
tions of Comet C/1999 S4. For the latter case, all observed values were
positive for the smallest phase angle (60.9◦). Then both positive and
negative values appeared at intermediate values of φ, becoming finally
mostly negative at φ ≈ 120◦.

Regarding the candidate mechanisms to produce CP :

• The breaking of the symmetry of a comet around the direction of the
incident light is a necessary condition for a mechanism to circularly
polarize the scattered light.

• A complete list of candidates to produce CP of light scattered in comets
is the following:
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1. Alignment of non-spherical grains.

2. Breaking of the mirror symmetry.

3. Optical activity of the material composing the particles.

4. Local observation of a non-central region.

5. Inhomogeneous distribution of particles in the coma.

6. Asymmetrical nucleus of the comet.

Regarding the alignment of non-spherical particles:

• Prolate rectangular prisms of dimensions 0.1 µm×0.1 µm×0.2 µm with
a density of 3 gcm−3 are aligned in 1.8 · 104 s due to the bombardment
by the solar wind particles at an heliocentric distance of 1AU .

• The alignment occurs with the longest axis of the particle oriented
perpendicularly to the direction of the incident light.

• Oblate particles with the same volume and density as the prolate ones,
but with axes ratios 2:2:1, are not aligned even in 2.4 · 105 s.

• If particles in comets were actually aligned and the responsible mech-
anism for the alignment was the bombardment by the solar wind, we
would not obtained any non-zero DCP , because the cloud of aligned
particles would be symmetrical around the direction of the incident
light.

Regarding asymmetrical model particles:

• For the snake-like shape with seven monomers and m = 1.5 + i0.001,
the mean amplitude of the curve of the DCP is close to zero for small
size parameters (as corresponds to the Rayleigh domain), and then
grows as the size parameters of the monomers increases to x = 1.8, in
which case a maximum larger than 2% is found. When the size param-
eter becomes larger than x = 1.8, the amplitude decreases gradually,
becoming essentially zero for x = 10.

• For the snake-like shape with seven monomers and m = 1.5+i0.001, the
complexity of the curves of the DCP increases always when increasing
the size of the particle.

• Single scattering of optically inactive asymmetrical particles in random
orientations can give large values of the DCP of the scattered light
(more than 2%), at least for a snake-like aggregate composed of seven
spherical monomers with m = 1.5 + i0.001.
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• If we use a typical power-law size distribution, the curves of the DCP
corresponding to snake-like aggregates made of 7 monomers with m =
1.5+i0.001 still show values of the DCP of the order of the observations
(≈ 0.1% or less).

• Increasing the absorption of the particles makes the main amplitude of
the curves of the DCP to decrease, at least for snake-like aggregates
of seven monomers with x = 2 and Re(m) = 1.5. However, the effect
is the opposite if the imaginary part of the refractive index is fixed to
Im(m) = 0.001 and the real part is increased.

• By increasing the number of monomers of an aggregate, but keeping the
whole size constant, the number of maxima and minima of DCP curves
increases and the amplitudes of these decreases, at least for snake-like
particles with x = 2 and m = 1.5 + i0.001.

• It is not necessary that monomers composing the aggregates are equal-
sized to obtain high values of the DCP . In fact, the snake particle
gives almost identical curves of the DCP even taking for the monomers
volumes as different as V0, V0 + 30%V0 and V0 − 30%V0.

• If the snake particle made of 7 monomers is compared to the Mr
Sanchez particle (made of 25 monomers and more complex), the mean
amplitude of the curve of the DCP is larger for the snake at small size
parameters (X . 4), but it is comparable for both shapes if the size of
the aggregates is large enough (X & 7).

• The peaks of the curves of the DCP may be due to resonances. There
exist two types of peaks: primary peaks (fixed number, at fixed scat-
tering angles and due to resonances by the substructures that produce
the asymmetry of the particle), and secondary peaks (the number in-
creases with the size of the grain, not at fixed scattering angles and due
to resonances by the monomers).

Regarding irregular particles:

• Primary peaks have smaller amplitudes in randomly built aggregates
than in the asymmetrical model particles used in the previous chapter.

• Secondary peaks have larger amplitudes than primary ones in randomly
built aggregates.
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• The DCP of a sample of particles averaged over sizes for a fixed shape
is mainly determined by the primary peaks, as in the case of model
particles.

• A lower DCP arises from a size-averaged sample of randomly built
aggregates of a fixed shape than for that of model grains.

• The DCP rapidly tends to zero when building a sample with just a
few size-averaged shapes.

• Single scattering by asymmetrical particles in random orientation does
not make a significant contribution of the observed DCP in comets.

Regarding optical activity:
Althoug there are evidences that optical active materials are present in

comets, we rule out the scattering by optically active grains as the responsible
mechanism for the DCP observed in comets, because it does not match some
of the features found in the observations.

Regarding multiple scattering:

• A new model of radiative transfer in the coma of comets has been
developed, including any kind of particles either in conditions of single
or multiple scattering.

• A certain DCP appears in an azimuthally symmetrical comet if we
break the symmetry of the system by considering only light coming
from a non-central zone of the comet in conditions of multiple scatter-
ing. However, the obtained values of the DCP are one or two orders
of magnitude below the observations when using spherical silicate-like
particles for the dust grains of the coma.

• A non-negligible DCP arises when integrating all light coming from
a non-symmetrical comet (coma divided into two part with very dif-
ferent optical thicknesses, the optical axis contained in the plane that
separates both parts). Again the values are one or two orders of mag-
nitude below the observations. Observing just a small region of the
high-density half of the coma does not lead to results comparable to
the observations either.

• Using non-spherical particles or a carbon-like refractive index for the-
grains of the coma may yield higher calculated values of the DCP .
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Future work

• To perform calculations of the DCP with the Monte Carlo radiative
transfer model by using non-spherical particles of sizes ranging from
0.1 µm to 1 mm.

• To perform calculations of the DCP with the Monte Carlo radiative
transfer model by using a refractive index typical for amorphous carbon.

• To include the possibility to use a particular scattering matrix for each
particle at each orientation in the Monte Carlo model, instead of using
average matrices.

• To include the possibility of a layered number density distribution of
particles in the coma for the radiative transfer model in order to fit lin-
ear polarization in situ measurements of the EDLP in the atmosphere
of Titan (collaboration with Robert West-JPL).

• To include the possibility of dealing with numerical, instead of ana-
lytical, number density distributions of particles in the coma for the
radiative transfer model. This would be applicable, e.g., to the outputs
of the circumnuclear coma hydrodynamic models by Crifo [10].

• To build a numerical code to calculate the DCP given by optically
active particles.

• To mix together several candidate mechanisms producing CP by using,
in the radiative transfer model, scattering matrices corresponding to
aligned, asymmetrical and optically active particles.

• To build an adequate model of scattering on surfaces and use it to
simulate the reflection of light on the nucleus of the comet.
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Appendix A

General method to sample
values of a variable from its
probability density function

The probability density p of a variable x is defined such as the probability
of x to be between x1 and x2 is given by P (x1 ≤ x ≤ x2) =

∫ x2

x1

p(x)dx. The
probability is equal to the area under the curve of p(x) from x1 to x2: equal
areas means equal probabilities. Let us divide now the area under the curve
of p(x) into infinite regions of elemental surface dS. The probability of x to
be within each of those regions is the same, because they all have the same
area. A way of sampling x is to uniformly randomly choose one region of area
dS (a), and then calculate the coordinate x corresponding to that region (b).
Step (a) can be achieved as follows: the chosen region is the last elemental
surface added to the integral S(x) =

∫ x

0
p(x′)dx′ to make it a certain value ξ.

If ξ is uniformly distributed, all regions of area dS will be equally probable.
Step (b) simply consists on finding the value of x that makes S(x) = ξ.

In summary, a way to sample values of x from a probability density
function p is the following:

1. To determine a uniform random number ξ within [0, 1].

2. To work x out from S(x) = ξ.
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[39] L. Lorenz. Über die refractionconstante. Ann. Phys. Chem., 11:70–103,
1880.

[40] A.E.H. Love. The scattering of electric waves by a dielectric sphere.
In London. Math. Soc. Conference, volume 30, pages 308–321, London,
1899.

[41] R.W. Maas, E.P. Ney, and N.J. Woolf. The 10-MICRON emission peak
of comet Bennett 1969i. Astrophysical Journal, 160:L101, 1970.

[42] D.W. Mackowski and M.I. Mishchenko. Calculation of the T-matrix and
the scattering matrix for ensembles of spheres. Journal of the Optical
Society of America A, 13:2266–2278, 1996.

[43] N. Manset and P. Bastien. Polarimetric observations of comets C/1995
O1 Hale-Bopp and C/1996 B2 Hyakutake. Icarus, 145:203–219, May
2000.

[44] E.P. Mazets, R.L. Aptekar, S.V. Golenetskii, Y.A. Guryan, A.V.
Dyachkov, V.N. Ilyinskii, V.N. Panov, G.G. Petrov, A.V. Savvin,
R.Z. Sagdeev, I.A. Sokolov, N.G. Khavenson, V.D. Shapiro, and V.I.
Shevchenko. Comet Halley dust environment from SP-2 detector mea-
surements. Nature, 321:276–278, 1986.
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